Carbon dioxide (CO2)
Argon (Ar)
Hydrogen (H)
Helium (He)
Answer: 28.4 g of aluminum oxide is produced by the reaction of 15.0 g of aluminum metal
Explanation:
To calculate the moles :
The balanced chemical equuation is:
According to stoichiometry :
4 moles of
produce == 2 moles of
Thus 0.556 moles of
will produce=
of
Mass of
Thus 28.4 g of aluminum oxide is produced by the reaction of 15.0 g of aluminum metal.
Answer:
The correct option is: (D) -2.4 kJ/mol
Explanation:
<u>Chemical reaction involved</u>: 2PG ↔ PEP
Given: The standard Gibb's free energy change: ΔG° = +1.7 kJ/mol
Temperature: T = 37° C = 37 + 273.15 = 310.15 K (∵ 0°C = 273.15K)
Gas constant: R = 8.314 J/(K·mol) = 8.314 × 10⁻³ kJ/(K·mol) (∵ 1 kJ = 1000 J)
Reactant concentration: 2PG = 0.5 mM
Product concentration: PEP = 0.1 mM
Reaction quotient: ![Q_{r} =\frac{\left [ PEP \right ]}{\left [ 2PG \right ]} = \frac{0.1 mM}{0.5 mM} = 0.2](https://tex.z-dn.net/?f=Q_%7Br%7D%20%3D%5Cfrac%7B%5Cleft%20%5B%20PEP%20%5Cright%20%5D%7D%7B%5Cleft%20%5B%202PG%20%5Cright%20%5D%7D%20%3D%20%5Cfrac%7B0.1%20mM%7D%7B0.5%20mM%7D%20%3D%200.2)
<u>To find out the Gibb's free energy change at 37° C (310.15 K), we use the equation:</u>

![\Delta G = 1.7 kJ/mol + [2.303 \times (8.314 \times 10^{-3} kJ/(K.mol))\times (310.15 K)] log (0.2)](https://tex.z-dn.net/?f=%5CDelta%20G%20%3D%201.7%20kJ%2Fmol%20%2B%20%5B2.303%20%5Ctimes%20%288.314%20%5Ctimes%2010%5E%7B-3%7D%20kJ%2F%28K.mol%29%29%5Ctimes%20%28310.15%20K%29%5D%20log%20%280.2%29)
![\Delta G = 1.7 + [5.938] \times (-0.699) = 1.7 - 4.15 = (-2.45 kJ/mol)](https://tex.z-dn.net/?f=%5CDelta%20G%20%3D%201.7%20%2B%20%5B5.938%5D%20%5Ctimes%20%28-0.699%29%20%3D%201.7%20-%204.15%20%3D%20%28-2.45%20kJ%2Fmol%29)
<u>Therefore, the Gibb's free energy change at 37° C (310.15 K): </u><u>ΔG = (-2.45 kJ/mol)</u>
According to this formula :
㏑[A] /[Ao] = - Kt
when we have Ao = 0.3 m
and K =0.46 s^-1
t = 20min = 0.2 x 60 =12 s
So by substitution :
㏑[A] / 0.3 = - 0.46 * 12
㏑[A] / 0.3 = - 5.52
by taking e^x for both side of the equation we can get [A]
∴[A] = 0.0012 mol dm^-3