It should be noted that bond A has greater energy because C. The atoms in bond A are held more tightly together than the atoms in bond B.
<h3>Bond</h3>
The relationship between the bond energies of nitrogen, iodine, and fluorine gases is that the bond in nitrogen gas is the most difficult to break.
From the information given, the molecule with the greatest bid energy is CH4. The bind energy measures the bond strength that the chemical bond has.
Also, the bond energy of the reactants in reaction 1 is greater than the bond energy of the reactants in reaction 2. Due to this, reaction 1 requires a greater input of energy than reaction 2.
Lastly, the difference in the bond energy of Chlorine and Bromine is that Bromine has more electron levels than chlorine.
Learn more about bonds on:
brainly.com/question/819068
Answer:
It is basic.
Explanation:-
Given hydrogen ion concentration [H+] = 1×10^-12
Using the formula
pH = - log [H+]
= - log [ 1 x 10^-12]
= 12
Since the pH is more than 7, the chemical is basic
Answer:
The answer is
<h2>[OH-] = 1.66 × 10^-14 M</h2>
Explanation:
To find the [OH-] we must first find the pH and the pOH of the solution
That's
pH + pOH = 14
pOH = 14 - pH
To find the pH we use the formula
pH = -log [H3O+]
From the question
[H3O+] = 0.6 M
pH = - log 0.6
pH = 0.22
pOH = 14 - 0.22
pOH = 13.78
We can now find the [OH -] in the solution using the formula
pOH = - log [OH-]
13.78 = - log [OH-]
Find the antilog of both sides
We have the final answer as
<h3>[OH-] = 1.66 × 10^-14 M</h3>
Hope this helps you
Answer:
Final Temperature = 140.09K
q = 0 (Adiabatic process)
w = 7272.95J
DeltaH = -9.37KJ
DeltaU = -7272.95J
Explanation:
The detailed mathematical derivation from the first principle, and the appropriate substitution is as shown in the attached file.