Answer:
False.
Explanation:
Rate of reaction also depends on the number of collision that is being happening in reacting molecules. So concentration of the reactants is also important to decide the rate of reaction.
The rate of reaction is dependent on the concentration as well.
As the concentration of reactants decreases with time number of collisions also decreases .
Answer:
hey love! what is the question??
Acetic acid activates the bromine and makes it a better electrophile.
<h3>What is bromination?</h3>
When a substance undergoes bromination, bromine is added to the compound as a result of the chemical reaction. After bromination, the result will have different properties from the initial reactant.
<h3>Why is 15M acetic acid used as a solvent for bromination?</h3>
DCM (dichloromethane) requires more time. Acetic acid has protons that can give one of the Br (bromine) a positive charge and activate it. There is a brief loss of aromaticity that calls for high energy activation.
Refer to the attached image for bromination reaction.
Learn more about bromination here:
brainly.com/question/26428023
#SPJ4
The standard atomic weight is the average mass of an element in atomic mass units ("amu"). Though individual atoms always have an integer number of atomic mass units, the atomic mass on the periodic table is stated as a decimal number because it is an average of the various isotopes of an element.
Answer:
1.634 molL-1
Explanation:
The mol ration between NH3 and HCl is 1 : 1
Using Ca Va / Cb Vb = Na / Nb where a = acid and b = base
Na = 1
Nb = 1
Ca = 0.208 molL-1
Cb = ?
Va = 19.64 mL
Vb = 25.00mL
Solving for Cb
Cb = Ca Va / Vb
Cb = 0.208 * 19.64 / 25.0
Cb = 0.1634 molL-1 (Concentration of diluted ammonia solution)
Using the dilution equation;
C1V1 = C2V2
Initial Concentration, C1 = ?
Initial Volume, V1 = 25.00 mL
Final Volume, V2 = 250 mL
Final Concentration, C2 = 0.1634 molL-1
Solving for C1;
C1 = C2 * V2 / V1
C1 = 0.1634 * 250 / 25.00
C1 = 1.634 molL-1