Answer: Option C
C) accelerated vertical motion and constant horizontal motion.
Explanation:
If there is no air resistance then during the projectile movement the only force that causes an acceleration is the gravitational force.
We know that this force produces an acceleration of 9.8 m / s ^ 2 in the projectile.
As the gravitational force attracts the object towards the earth, then the acceleration that this force produces is always in the vertical direction. In the horizontal direction the object is not accelerated (because there is no air resistance).
Therefore the correct answer is option C.
"accelerated vertical motion and constant horizontal motion".
Before taking a pressure reading, it is necessary for the technician to first allow the temperature of the cylinder to stabilize to room temperature because a comparison with a temperature-pressure chart is only valid and true when both temperature and pressure of the refrigerant are stable.
Answer: 109.4 mm
Explanation: <u>Distance</u> is a scalar quantity and it is the measure of how much path there are between two locations. It can be calculated as the product of velocity and time: d = vt
The separation between the two steamrollers is 105 mm or 0.105 m. They collide to each other at the middle of the separation:
location of collision =
= 0.0525 m
To reach that point, both steamrollers will have spent



t = 0.04375 s
The fly is travelling with speed of 2.5 m/s. So, at t = 0.04375 s:
d = 2.5*0.04375
d = 0.109375 m
Until it is crushed, the fly will have traveled 109.4 mm.
Answer:
A)0.00022s b)40363.6N c) 0.025m/s
Explanation:
Mass = 24g = 0.024kg, distance though the target = thickness of the target = 25cm = 0.25m
Initial speed of the bullet = 1300m/s, final speed = 930m/s
Using equation of motion
Distance = 1/2(vf+vi)*t (time in seconds)
t = 0.25*2/(1300+930) = 0.00022s
B) force exerted on the body
F = ma = m* (vf-vi)/t = 0.024*(930-1300)/0.00022
F = -40363N, it is negative because the body decelerated during this motion
C) using law of conservation of momentum,
M1*U1+ M2*U2(M2and U1 are the mass and initial speed of the body) = M1V1+ M2V2
The target was at rest so initial speed U2 = 0
0.024*1300 + 360*0 = 0.024*930 + 360*V2
31.2 = 22.32+360*V2
31.2-22.33 = 360*V2
V2 = 8.88/360 = 0.025m/s
Answer:
they cross over one another between charge.