3 and a half cookies! that should be the answer!
Answer:
idk tying to get more points
Step-by-step explanation:
idk idk if
∠BDC and ∠AED are right angles, is a piece of additional information is appropriate to prove △ CEA ~ △ CDB
Triangle AEC is shown. Line segment B, D is drawn near point C to form triangle BDC.
<h3> What are Similar triangles?</h3>
Similar triangles, are those triangles which have similar properties,i.e. angles and proportionality of sides.
Image is attached below,
as shown in figure
∡ACE = ∡BCD ( common angle )
∡AED = ∡BDC ( since AE and BD are perpendicular to same line EC and make right angles as E and C)
∡EAC =- ∡DBC ( corresponding angles because AE and BD are parallel lines)
Thus, △CEA ~ △CDB , because of the two perpendiculars AE and BD.
Learn more about similar triangles here:
brainly.com/question/25882965
#SPJ1
Answer:
Step-by-step explanation:
Answer:
<h2>You've worked with numbers on a number line. You know how to graph numbers like 0, 1, 2, 3, etc. on the number line. There are other kinds of numbers that can be graphed on the number line, too. Let's see what they look like and where they are located on the number line.</h2>
Step-by-step explanation:
<h2>Hope this helps!!</h2>