Answer:
It's 3 x 10 1
Step-by-step explanation:
:)
Answer:
40 minutes per night, 5 days per week
Step-by-step explanation:
Area i would pack probably water and good and my phone and the main things you need to survive would be good and water and a shelter
For this case, you can graph the given table and observe that it is not a linear function.
The reason in this case would be the following:
No, because it does not have a constant rate of change.
Note: However, it should be noted that it has a very good approximation to a linear function.
a. R\p = (10 - q)*2
The inverse demand function is just the inverse function of the demand function. In other words, we just have to isolate p in the demand function:
p = (10 - q)*2
b. R\25
The price for 5 units of output is given by the inverse demand function:
p = (10 - 5)*2 = 10
We replace p in the profit function:
π(q) = 10 * 5 - 5² = 25
c. 3
For this one, we replace the inverse demand function in the profit function and derivate for q, then equate to 0 and solve:
π(q) = ((10 - q)*2)*q - q² = 20q - 2q² - q² = 20q - 3q²
dπ/dq = 20 - 6*q
20 - 6q = 0
q = 20/6 = 3.33333
Now, a decimal level of output makes no sense. So, now we try the nearest integers 3 and 4, and find the respectives profits. The output that has that maximum profit will be the one that maximizes the profit. Keep in mind, that this will only be true in this particular case because the profit function has the form of a quadratic equation:
π(3) = 20 * 3 - 3*(3)² = 33
π(4) = 20 * 4 - 3*(4)² = 32
The answer is 3.