Answer:
Step-by-step explanation:
Given:
Area = 3x^3 - 16x^2 + 31x - 20
Base:
x^3 - 5x
Area of trapezoid, S = 1/2 × (A + B) × h
Using long division,
(2 × (3x^3 - 16x^2 + 31x - 20))/x^3 - 5x
= (6x^3 - 32x^2 + 62x - 40))/x^3 - 5x = 6 - (32x^2 - 92x + 40)/x^3 - 5x = 2S/Bh - Ah/Bh
= 2S/Bh - A/B
= (2S/B × 1/h) - A/B
Since, x^3 - 5x = B
Comparing the above,
A = 32x^2 - 92x + 40
2S/B = 6
Therefore, h = 1
1.) 3+2=? ?=5 brothers 2.) 54+9=? ?=63 students 3.) 15-9=? ?=4
4.) 60-20=? ?=40 children 5.) 50-15=? ?=35 trees 6.) 14+4=? ?=18 times
Don't know why you needed help with this but ok.
A reflection over the x-axis
A cylinder's volume is =
π r² h,
and its surface area is =
2π r h + 2π r².