Answer:
See answer and graph below
Step-by-step explanation:
∬Ry2x2+y2dA
=∫Ry.2x.2+y.2dA
=A(2y+4Ryx)+c
=∫Ry.2x.2+y.2dA
Integral of a constant ∫pdx=px
=(2x+2.2Ryx)A
=A(2y+4Ryx)
=A(2y+4Ryx)+c
The graph of y=A(2y+4Ryx)+c assuming A=1 and c=2
Answer:
<u>The correct answer is that the number of different ways that the letters of the word "millennium" can be arranged is 226,800</u>
Step-by-step explanation:
1. Let's review the information provided to us to answer the question correctly:
Number of letters of the word "millennium" = 10
Letters repeated:
m = 2 times
i = 2 times
l = 2 times
n = 2 times
2. The number of different ways that the letters of millennium can be arranged is:
We will use the n! or factorial formula, this way:
10!/2! * 2! * 2! * 2!
(10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1)/(2 * 1) * (2 * 1) * (2 * 1) * (2 *1)
3'628,800/2*2*2*2 = 3'628,800/16 = 226,800
<u>The correct answer is that the number of different ways that the letters of the word "millennium" can be arranged is 226,800</u>
Answer:
= (x + 5)(x - 9)
Step-by-step explanation:
The answer is 54 pi in^3. All you have to do is multiply 3x3, then multiply that by 6 and you get the answer 54.
Answer:
Step-by-step explanation:
560=3s+b
b.
560=3×150+b
b=560-450=110
when s=149,b=560-3×149=560-447=113
s=2,b=560-3×2=560-6=554
s=1,b=560-3×1=557
s=0,b=560-3×o=560
so domain of b={110,113,116,...,554,557,560}