The length of the line segment BC is 31.2 units.
<h2>Given that</h2>
Triangle ABC is shown.
Angle ABC is a right angle.
An altitude is drawn from point B to point D on side AC to form a right angle.
The length of AD is 5 and the length of BD is 12.
<h3>We have to determine</h3>
What is the length of Line segment BC?
<h3>According to the question</h3>
The altitude of the triangle is given by;
![\rm Altitude = \sqrt{xy}](https://tex.z-dn.net/?f=%5Crm%20Altitude%20%3D%20%5Csqrt%7Bxy%7D)
Where x is DC and y is 5 units.
Then,
The length DC is.
![\rm Altitude = \sqrt{xy}\\ \\ 12 = \sqrt{(DC) \times 5}\\ \\ \sqrt{DC } = \dfrac{12}{\sqrt{5}}\\ \\ ](https://tex.z-dn.net/?f=%5Crm%20Altitude%20%3D%20%5Csqrt%7Bxy%7D%5C%5C%0A%5C%5C%0A12%20%3D%20%5Csqrt%7B%28DC%29%20%5Ctimes%205%7D%5C%5C%0A%5C%5C%0A%5Csqrt%7BDC%20%7D%20%3D%20%5Cdfrac%7B12%7D%7B%5Csqrt%7B5%7D%7D%5C%5C%0A%5C%5C%0A)
Squaring on both sides
![\rm DC = \dfrac{144}{5}\\ \\ DC = 28.8](https://tex.z-dn.net/?f=%5Crm%20DC%20%3D%20%5Cdfrac%7B144%7D%7B5%7D%5C%5C%0A%5C%5C%0ADC%20%3D%2028.8)
Considering right triangle BDC, use the Pythagorean theorem to find BC:
![\rm BC^2 = DC^2+BD^2\\\\ BC^2 = (28.8)^2+(12)^2\\ \\ BC = \sqrt{829.44+144}\\ \\ BC = \sqrt{973.44}\\ \\ \rm BC = 31.2 \ units](https://tex.z-dn.net/?f=%5Crm%20BC%5E2%20%3D%20DC%5E2%2BBD%5E2%5C%5C%5C%5C%20%20BC%5E2%20%3D%20%2828.8%29%5E2%2B%2812%29%5E2%5C%5C%0A%0A%5C%5C%0ABC%20%3D%20%5Csqrt%7B829.44%2B144%7D%5C%5C%0A%5C%5C%0ABC%20%3D%20%5Csqrt%7B973.44%7D%5C%5C%0A%5C%5C%0A%5Crm%20BC%20%3D%2031.2%20%5C%20units)
Hence, the length of the line segment BC is 31.2 units.
To know more about Pythagoras Theorem click the link given below.
brainly.com/question/26252222