1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
S_A_V [24]
3 years ago
5

What is the constant of proportionality for m=32•g

Mathematics
1 answer:
lina2011 [118]3 years ago
6 0

Answer:

∴ Constant of Proportionality is 32

Step-by-step explanation:

Here Given;

m=32\times g  (equation-1)

\frac{m}{g}=32  (equation-2) (divide with 'g' on both side)

We know,

The Constant of Proportionality equation is given;

y=k\times x  (equation-3)

Where 'k' is known as Constant of Proportionality.

Comparing equation-1 and equation-3;

y=m and x=g

Now equation-2 become;

k=\frac{y}{x}

Plug y=m and x=g in above equation;

\frac{m}{g}=k  (equation-4)

By comparing equation-2 and equation-4;

k=32

So Constant of Proportionality is 32

You might be interested in
Chris tells Adam that the decimal value of − 1 1/3 is not a repeating decimal. Is Chris correct?
Verdich [7]
Chris is wrong since - \frac{11}{3} =-3.666666666666
7 0
3 years ago
Read 2 more answers
What is the volume of the cube in cubic feet? please help
motikmotik

Answer:

512

Step-by-step explanation:

since its a cube, all the side lengths are even, so its just 8^3 or 8*8*8

8 0
3 years ago
Solve y^2+7y+12=0 by completing the square.​
kkurt [141]

Answer:

y = -3, -4

Step-by-step explanation:

Formula is (b/2)^2

So...

(y+7/2)^2 - 1/4 = 0

Add 1/4 to each side

(y+7/2)^2 = 1/4

Square root...

y+7/2 = +-1/2

Add

y = -3, -4

8 0
3 years ago
Use this list of Basic Taylor Series and the identity sin2θ= 1 2 (1−cos(2θ)) to find the Taylor Series for f(x) = sin2(3x) based
notsponge [240]

Answer:

The Taylor series for sin^2(3 x) = - \sum_{n=1}^{\infty} \frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}, the first three non-zero terms are 9x^{2} -27x^{4}+\frac{162}{5}x^{6} and the interval of convergence is ( -\infty, \infty )

Step-by-step explanation:

<u>These are the steps to find the Taylor series for the function</u> sin^2(3 x)

  1. Use the trigonometric identity:

sin^{2}(x)=\frac{1}{2}*(1-cos(2x))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(2(3x)))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(6x))

   2. The Taylor series of cos(x)

cos(y) = \sum_{n=0}^{\infty}\frac{-1^{n}y^{2n}}{(2n)!}

Substituting y=6x we have:

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

   3. Find the Taylor series for sin^2(3x)

sin^{2}(3x)=\frac{1}{2}*(1-cos(6x)) (1)

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!} (2)

Substituting (2) in (1) we have:

\frac{1}{2} (1-\sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!})\\ \frac{1}{2}-\frac{1}{2} \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

Bring the factor \frac{1}{2} inside the sum

\frac{6^{2n}}{2}=9^{n}2^{2n-1} \\ (-1^{n})(9^{n})=(-9^{n} )

\frac{1}{2}-\sum_{n=0}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

Extract the term for n=0 from the sum:

\frac{1}{2}-\sum_{n=0}^{0}\frac{-9^{0}2^{2*0-1}x^{2*0}}{(2*0)!}-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \frac{1}{2} -\frac{1}{2} -\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ 0-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ sin^{2}(3x)=-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

<u>To find the first three non-zero terms you need to replace n=3 into the sum</u>

sin^{2}(3x)=\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \sum_{n=1}^{3}\frac{-9^{3}2^{2*3-1}x^{2*3}}{(2*3)!} = 9x^{2} -27x^{4}+\frac{162}{5}x^{6}

<u>To find the interval on which the series converges you need to use the Ratio Test that says</u>

For the power series centered at x=a

P(x)=C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+...+ C_{n}(x-a)^{n}+...,

suppose that \lim_{n \to \infty} |\frac{C_{n}}{C_{n+1}}| = R.. Then

  • If R=\infty, the the series converges for all x
  • If 0 then the series converges for all |x-a|
  • If R=0, the the series converges only for x=a

So we need to evaluate this limit:

\lim_{n \to \infty} |\frac{\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}}{\frac{-9^{n+1}2^{2*(n+1)-1}x^{2*(n+1)}}{(2*(2n+1))!}} |

Simplifying we have:

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |

Next we need to evaluate the limit

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |\\ \frac{1}{18x^{2} } \lim_{n \to \infty} |-(n+1)(2n+1)}|}

-(n+1)(2n+1) is negative when n -> ∞. Therefore |-(n+1)(2n+1)}|=2n^{2}+3n+1

You can use this infinity property \lim_{x \to \infty} (ax^{n}+...+bx+c) = \infty when a>0 and n is even. So

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } | \\ \frac{1}{18x^{2}} \lim_{n \to \infty} 2n^{2}+3n+1=\infty

Because this limit is ∞ the radius of converge is ∞ and the interval of converge is ( -\infty, \infty ).

6 0
3 years ago
Find the lateral surface area need help pls
elena55 [62]

lateral surface area of cylinder is = 2πrh

= 2 × 3.14 × 8 ×5

= 251.2 unit²

HOPE IT HELPS

PLEASE MARK ME BRAINLIEST ☺️

7 0
2 years ago
Other questions:
  • Wxy is a right angle
    5·2 answers
  • Solution for dy/dx+xsin 2y=x^3 cos^2y
    5·1 answer
  • Suppose you roll a fair six-sided die 25 times. What is the probability that you roll 5 or more 6’s on that die?
    14·1 answer
  • 1+1 please mark me as brainliest as i am giving free points out
    11·2 answers
  • Write two multiplication equations using fractions and mixed numbers. Write one equation that will have a product greater than t
    5·1 answer
  • How do u write an equation in standard form containing the points (0,2) and (-4,1)
    6·1 answer
  • Find the domain and range of the following absolute value functions. F(x) = |3x-4| First person to answer gets marked brainliest
    7·1 answer
  • *TEN POINTS* Answer the question. Deals with functions.
    7·1 answer
  • I need help SHOW YOUR WORK
    13·2 answers
  • A circle is dilated by a scale factor of 1.5 to create a new circle. The area of the new circle is 1.5 times the area of the ori
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!