Answer:
Step-by-step explanation:
For the null hypothesis,
µ = 60
For the alternative hypothesis,
h1: µ < 60
This is a left tailed test
Since the population standard deviation is not given, the distribution is a student's t.
Since n = 100,
Degrees of freedom, df = n - 1 = 100 - 1 = 99
t = (x - µ)/(s/√n)
Where
x = sample mean = 52
µ = population mean = 60
s = samples standard deviation = 22
t = (52 - 60)/(22/√100) = - 3.64
We would determine the p value using the t test calculator. It becomes
p = 0.00023
We would reject the null hypothesis if α = 0.05 > 0.00023
Answer:
- 0.5 + 2.985i
- 1 + 2.828i
- 1.5 + 2.598i
- 2 + 2.236i
Explanation:
Complex numbers have the general form a + bi, where a is the real part and b is the imaginary part.
Since, the numbers are neither purely imaginary nor purely real a ≠ 0 and b ≠ 0.
The absolute value of a complex number is its distance to the origin (0,0), so you use Pythagorean theorem to calculate the absolute value. Calling it |C|, that is:
Then, the work consists in finding pairs (a,b) for which:
You can do it by setting any arbitrary value less than 3 to a or b and solving for the other:

I will use b =0.5, b = 1, b = 1.5, b = 2

Then, four distinct complex numbers that have an absolute value of 3 are:
- 0.5 + 2.985i
- 1 + 2.828i
- 1.5 + 2.598i
- 2 + 2.236i
Answer:
1 minute and 8 seconds or 1:08
Step-by-step explanation:
by subtracting both at starting with 9:17-8:49 you will get a uneven decimal than you gonna have to give as much 60 seconds you can get out of it the 60 seconds equals a minute
There is no pie chart shown, please attach one.
Answer:
(- 10, 45 )
Step-by-step explanation:
Since the dilatation is centred at the origin, then multiply each of the coordinates by the scale factor, that is
(- 2, 9 ) → (- 2 × 5, 9 × 5 ) → (- 10, 45 )