1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Black_prince [1.1K]
2 years ago
7

At the museum, 10% of the visitors were senior citizens. If there were 150 senior citizens , what was the total number of visito

rs?
Mathematics
2 answers:
morpeh [17]2 years ago
6 0

Answer:

1,500

Step-by-step explanation:

10% of 1,500 is 150 basically

Nikitich [7]2 years ago
4 0

Answer:

1500 visitors

Step-by-step explanation:

150=10%

10%*10=100%

So: 150*10=1500 visitors

You might be interested in
When 0.3(4x – 8) – 0.5(–2.4x + 4) is simplified, what is the resulting expression?
andrew11 [14]

Answer:

2.4x - 4.4

Step-by-step explanation:

0.3(4x – 8) – 0.5(–2.4x + 4)

1.2x - 2.4 + 1.2x -2

2.4x - 4.4

8 0
3 years ago
Prove that
Pani-rosa [81]
Let's start from what we know.

(1)\qquad\sum\limits_{k=1}^n1=\underbrace{1+1+\ldots+1}_{n}=n\cdot 1=n\\\\\\
(2)\qquad\sum\limits_{k=1}^nk=1+2+3+\ldots+n=\dfrac{n(n+1)}{2}\quad\text{(arithmetic  series)}\\\\\\
(3)\qquad\sum\limits_{k=1}^nk\ \textgreater \ 0\quad\implies\quad\left|\sum\limits_{k=1}^nk\right|=\sum\limits_{k=1}^nk

Note that:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=(-1)^1\cdot1^2+(-1)^2\cdot2^2+(-1)^3\cdot3^2+\dots+(-1)^n\cdot n^2=\\\\\\=-1^2+2^2-3^2+4^2-5^2+\dots\pm n^2

(sign of last term will be + when n is even and - when n is odd).
Sum is finite so we can split it into two sums, first S_n^+ with only positive trems (squares of even numbers) and second S_n^- with negative (squares of odd numbers). So:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=S_n^+-S_n^-

And now the proof.

1) n is even.

In this case, both S_n^+ and S_n^- have \dfrac{n}{2} terms. For example if n=8 then:

S_8^+=\underbrace{2^2+4^2+6^2+8^2}_{\frac{8}{2}=4}\qquad\text{(even numbers)}\\\\\\
S_8^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{8}{2}=4}\qquad\text{(odd numbers)}\\\\\\

Generally, there will be:

S_n^+=\sum\limits_{k=1}^\frac{n}{2}(2k)^2\\\\\\S_n^-=\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\\\\\\

Now, calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=
\left|\sum\limits_{k=1}^\frac{n}{2}(2k)^2-\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\right|=\\\\\\=
\left|\sum\limits_{k=1}^\frac{n}{2}4k^2-\sum\limits_{k=1}^\frac{n}{2}\left(4k^2-4k+1\right)\right|=\\\\\\

=\left|4\sum\limits_{k=1}^\frac{n}{2}k^2-4\sum\limits_{k=1}^\frac{n}{2}k^2+4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|=\left|4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|\stackrel{(1),(2)}{=}\\\\\\=
\left|4\dfrac{\frac{n}{2}(\frac{n}{2}+1)}{2}-\dfrac{n}{2}\right|=\left|2\cdot\dfrac{n}{2}\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\left|n\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\\\\\\


=\left|\dfrac{n^2}{2}+n-\dfrac{n}{2}\right|=\left|\dfrac{n^2}{2}+\dfrac{n}{2}\right|=\left|\dfrac{n^2+n}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\\\\\\\stackrel{(2)}{=}
\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

So in this case we prove, that:

 \left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk

2) n is odd.

Here, S_n^- has more terms than S_n^+. For example if n=7 then:

S_7^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{n+1}{2}=\frac{7+1}{2}=4}\\\\\\
S_7^+=\underbrace{2^2+4^4+6^2}_{\frac{n+1}{2}-1=\frac{7+1}{2}-1=3}\\\\\\

So there is \dfrac{n+1}{2} terms in S_n^-, \dfrac{n+1}{2}-1 terms in S_n^+ and:

S_n^+=\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2\\\\\\
S_n^-=\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2

Now, we can calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=
\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2-\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2\right|=\\\\\\=
\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}\left(4k^2-4k+1\right)\right|=\\\\\\=
\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}4k^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\

=\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-4\left(\dfrac{n+1}{2}\right)^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\=
\left|-4\left(\dfrac{n+1}{2}\right)^2+4\sum\limits_{k=1}^{\frac{n+1}{2}}k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|\stackrel{(1),(2)}{=}\\\\\\
\stackrel{(1),(2)}{=}\left|-4\dfrac{n^2+2n+1}{4}+4\dfrac{\frac{n+1}{2}\left(\frac{n+1}{2}+1\right)}{2}-\dfrac{n+1}{2}\right|=\\\\\\

=\left|-n^2-2n-1+2\cdot\dfrac{n+1}{2}\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-2n-1+(n+1)\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-2n-1+\dfrac{(n+1)^2}{2}+n+1-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-n+\dfrac{n^2+2n+1}{2}-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-n+\dfrac{n^2}{2}+n+\dfrac{1}{2}-\dfrac{n}{2}-\dfrac{1}{2}\right|=\left|-\dfrac{n^2}{2}-\dfrac{n}{2}\right|=\left|-\dfrac{n^2+n}{2}\right|=\\\\\\

=\left|-\dfrac{n(n+1)}{2}\right|=|-1|\cdot\left|\dfrac{n(n+1)}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

We consider all possible n so we prove that:

\forall_{n\in\mathbb{N}}\quad\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk
7 0
3 years ago
Can somebody please help me with this? I’ll give you a Brainly:)
wolverine [178]

Answer:

I think 90 degrees hope it helps

3 0
3 years ago
Jack collected 31.1 pounds of cans to recycle and plans to collect 5.9 more pounds each week. Write an equation in slope-interce
butalik [34]

Answer:36.10

Step-by-step explanation: add 31+5= 36 the other one 1 +9 = 10 that's the answer please mark me as brainlest

8 0
2 years ago
A company gives raises once a year. Amir's present salary is $12,000. His manager would like to raise Amir's salary to $84,000.
krek1111 [17]
Since $12,000 would be her whole current salary, I would just divide $84,000 by $12,000 because i know 12 can go into 84 evenly.

84,000 ÷ 12,000 = 7

Since it goes in to 84,000 evenly by 7 times, the raise would be 700%.
6 0
3 years ago
Other questions:
  • Suppose you invest $1600 at an annual interest rate of 4.6% compounded continuously. Using the formula A(t) =P*e^rt , how much w
    10·1 answer
  • One Us dollar equals .84 euros. Margo is traveling and wants to exchange $400 for euro. how many euros will she get? ​
    15·2 answers
  • How many ways are there to select 3 of 15 flavors of juice at the grocery store?
    9·1 answer
  • What is the measure of the radius of the cone in the diagram below? A cone has a height of 6 centimeters and diameter of 8 centi
    14·2 answers
  • A group of adults and students went on a class trip to Washington, DC. The number of male students was 1 more than 7 times the n
    8·1 answer
  • What is <br><img src="https://tex.z-dn.net/?f=6.73%20-%202%20%5Ctimes%205to%20%5C%3A%20the%20%5C%3Azero%20%5C%3A%20power%20%5Cdi
    7·1 answer
  • -8 (7/10) as a mixed number
    12·2 answers
  • 0.8x+3.2-4.3x=7.7-1.2x
    15·2 answers
  • Which property refers to "regrouping" the terms in the expression 9 (2-x) = 18 - 9x ?
    13·2 answers
  • What is the surface area of the triangular prism (Look at image)
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!