Let ‘s’ be the son’s age 12 years ago.
Let ‘f’ be the father’s current age.
4 years ago, the son was:
s-4
So, his father is currently:
3(s-4)
=
3s-12
Therefore:
f = 3s-12
In twelve years, the son will be:
s+12
And the father will be:
f+12
This can also be written as:
3s-12+12 as the fathers younger age would be f = 3s+12
=
3s
So, we know that s+12 is half the fathers current age, meaning the father is currently 2(s+12) which is equivalent to 2s+24. Also, we know that the father is currently 3 times the sons age 12 years ago, so 3s (proven by the calculations we made above). Therefore, 2s+24=3s which means 24=s. We can then substitute this, and we will receive 24+12 = 36
Son’s current age: 36
We then substitute the son’s age 12 years ago into 2s+24 to give us the father’s age.
2(24)+24 = 72
Father’s current age: 72
Answer:
Step-by-step explanation:
Answer:
Step-by-step explanation:
Assuming Roberto wants to completely fill each page that he puts cards in, this function describes the number of 2-card pages, a, and 3-card pages, b.
2a + 3b =18
Ricardo can fill up 9 2-card pages, and 6 3-card pages.
a=9, b=0
We must add 2 3-card pages at a time,so that we have an even number for the 2-card pages:
a=6, b=2
Add 2 to b once more:
a=3, b=4
One more time:
a=0, b=6:
Thus, Ricardo can display his figures in the following page combinations:
a=9, b=0
a=6, b=2
a=3, b=4
a=0, b=6
Remember that a= number of 2-card pages and b=number of 3-card pages
There are 4 different ways that Ricardo can arrange his figures in terms of what kind of pages he uses.
Answer:

Step-by-step explanation:
Let the missing integer be x
Solve for x

Move 3 to right hand side and change it's sign

The negative and positive integers are always subtracted but posses the sign of the bigger integer

Change the signs of both sides

Hope I helped!
Best regards! :D
The range of the function is the set of all possible outputs, that is, the set of all values obtained by applying the function to elements of the domain. So the set of all values which can be obtained by applying h(x) to an element of its domain is {−4,0,5,60} , and thus that is the range of h(x) .