Answer:
The answer is 0.2. It is an irrational number with a repeating 2. It should have a line over the two to represent it repeating.
Step-by-step explanation:
First divide 2 by 9.
Use a calculator or do it by hand.
You get your answer.
The trigonometric identity can be used to solve for the height of the blue ladder that is leaning against the building is
.
We have to determine
Which trigonometric identity can be used to solve for the height of the blue ladder that is leaning against the building?.
<h3>Trigonometric identity</h3>
Trigonometric Identities are the equalities that involve trigonometry functions and hold true for all the values of variables given in the equation.
Trig ratios help us calculate side lengths and interior angles of right triangles:
The trigonometric identity that can be used to solve for the height of the blue ladder is;

Hence, the trigonometric identity can be used to solve for the height of the blue ladder that is leaning against the building is
.
To know more about trigonometric identity click the link given below.
brainly.com/question/1256744
If we let x as the number of years of service in the company and f(x) as the increase in the wage, the step wise function that describes the scenario is
f(x) = { 0.5, x < 3
{ 1.0, 3 ≤ x < 6
{ 1.5, 6 ≤ x < 9
{ 2.0, 9 ≤ x < 12
The point (2, 12) represents the wage increase of x < 12
Answer:
So if ∠X is 70° then ∠Y is most likely going to be 70° as well. So if you take 180° which is a straight line and subtract both of the 70°'s you'd get 40°. This answer seems pretty accurate to me.
Step-by-step explanation:
Hope this helps you out! :)
(If any question s put them below and I'll try my best to answer them)
Answer:
t-shirts: 2790
profit: $12209
Step-by-step explanation:
Given the function:
p(x) = -x³ + 4x² + x
we want to maximize it.
The following criteria must be satisfied at the maximum:
dp/dx = 0
d²p/dx² < 0
dp/dx = -3x² + 8x + 1 = 0
Using quadratic formula:







d²p/dx² = -6x + 8
d²p/dx² at x = -0.12: -6(-0.12) + 8 = 8.72 > 0
d²p/dx² at x = 2.79: -6(2.79) + 8 = -8.74 < 0
Then, he should prints 2.79 thousands, that is, 2790 t-shirts to make maximum profits.
Replacing into profit equation:
p(x) = -(2.79)³ + 4(2.79)² + 2.79 = 12.209
that is, $12209