Well, for one thing, it could depend on which fruit is dropped first. You haven't mentioned that.
If they're both dropped at exactly the same time, then the melon at 32m hits the ground first.
It has nothing to do with their masses or weights. It's only a matter of which one has farther to fall. Even if it were a school-bus at 96m instead of a pomegranate, anything dropped from less than 96m would reach the ground in less time than the school-bus.
Answer:
Rebounding involves a change in the direction of an object; the before- and after-collision direction is different. ... As mentioned above, if cars rebound upon collision, the momentum change will be larger and so will the impulse. A greater impulse will typically be associated with a bigger force.
<h3>Please mark as brainliest</h3>
As per Einstein's theory of relativity we know that when an object will move with the speed comparable to the speed of light then the length of the object will be different from its length at rest position
This is also known as length contraction theory
As we know here that

so here we know that
v = 0.95 c
so from above equation we will have


so here the length will be SHORTER
To solve this exercise it is necessary to take into account the concepts related to Tensile Strength and Shear Strenght.
In Materials Mechanics, generally the bodies under certain loads are subject to both Tensile and shear strenghts.
By definition we know that the tensile strength is defined as

Where,
Tensile strength
F = Tensile Force
A = Cross-sectional Area
In the other hand we have that the shear strength is defined as

where,
Shear strength
Shear Force
Parallel Area
PART A) Replacing with our values in the equation of tensile strenght, then

Resolving for F,

PART B) We need here to apply the shear strength equation, then



In such a way that the material is more resistant to tensile strength than shear force.
Answer: In mechanics, the net force is the vector sum of forces acting on a particle or object. The net force is a single force that replaces the effect of the original forces on the particle's motion.
Explanation: Hope dis helps u