1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KatRina [158]
3 years ago
6

I WILL GIVE BRAINLIEST

Physics
2 answers:
frez [133]3 years ago
3 0
D. Magnet attracting metal.
This is because magnetic forces are non contact forces; they pull or push on objects without touching them.
harina [27]3 years ago
3 0

Answer:

d, magnetic attracting metal, because the force is still going on without the magnet touching metal, and you cant see the force

Explanation:

Hope this helps <33

You might be interested in
Fill in the term that completes the statement. The north and south poles of a magnetic field produced by an electromagnet will s
Minchanka [31]

Answer:

when the direction of the Current changes.

Explanation:

Electromagnet refers to an iron ore wrapped around with a coil of wire, in presence of electric current. As it acts like a magnet, when current is passed through it.

The north & south poles of magnetic fields produced by such magnet, change with direction of current passed through it.

6 0
3 years ago
Read 2 more answers
The peak luminosity of a white dwarf supernova is around 1010 Lsun, and it remains brighter than 108 Lsun for about 150 days. In
Airida [17]

Answer:

Explanation: find the attached solution below

8 0
4 years ago
How to convert grams to liters?? V.V? so if your using the weigh machine...and the machine reads in grams and you want liters...
masya89 [10]
You are trying to convert mass to volume. That ain't working
6 0
4 years ago
A satellite is in a circular orbit around Mars, which has a mass M = 6.40 × 1023 kg and radius R = 3.40 ×106 m.
Pepsi [2]

Answer:

a) The orbital speed of a satellite with a orbital radius R (in meters) will have an orbital speed of approximately \displaystyle \sqrt\frac{4.27 \times 10^{13}}{R}\; \rm m \cdot s^{-1}.

b) Again, if the orbital radius R is in meters, the orbital period of the satellite would be approximately \displaystyle 9.62 \times 10^{-7}\, R^{3/2}\; \rm s.

c) The orbital radius required would be approximately \rm 2.04 \times 10^7\; m.

d) The escape velocity from the surface of that planet would be approximately \rm 5.01\times 10^3\; m \cdot s^{-1}.

Explanation:

<h3>a)</h3>

Since the orbit of this satellite is circular, it is undergoing a centripetal motion. The planet's gravitational attraction on the satellite would supply this centripetal force.

The magnitude of gravity between two point or spherical mass is equal to:

\displaystyle \frac{G \cdot M \cdot m}{r^{2}},

where

  • G is the constant of universal gravitation.
  • M is the mass of the first mass. (In this case, let M be the mass of the planet.)
  • m is the mass of the second mass. (In this case, let m be the mass of the satellite.)  
  • r is the distance between the center of mass of these two objects.

On the other hand, the net force on an object in a centripetal motion should be:

\displaystyle \frac{m \cdot v^{2}}{r},

where

  • m is the mass of the object (in this case, that's the mass of the satellite.)
  • v is the orbital speed of the satellite.
  • r is the radius of the circular orbit.

Assume that gravitational force is the only force on the satellite. The net force should be equal to the planet's gravitational attraction on the satellite. Equate the two expressions and solve for v:

\displaystyle \frac{G \cdot M \cdot m}{r^{2}} = \frac{m \cdot v^{2}}{r}.

\displaystyle v^2 = \frac{G \cdot M}{r}.

\displaystyle v = \sqrt{\frac{G \cdot M}{r}}.

Take G \approx 6.67 \times \rm 10^{-11} \; m^3 \cdot kg^{-1} \cdot s^{-2},  Simplify the expression v:

\begin{aligned} v &= \sqrt{\frac{G \cdot M}{r}} \cr &= \sqrt{\frac{6.67 \times \rm 10^{-11} \times 6.40 \times 10^{23}}{r}} \cr &\approx \sqrt{\frac{4.27 \times 10^{13}}{r}} \; \rm m \cdot s^{-1} \end{aligned}.

<h3>b)</h3>

Since the orbit is a circle of radius R, the distance traveled in one period would be equal to the circumference of that circle, 2 \pi R.

Divide distance with speed to find the time required.

\begin{aligned} t &= \frac{s}{v} \cr &= 2 \pi R}\left/\sqrt{\frac{G \cdot M}{R}} \; \rm m \cdot s^{-1}\right. \cr &= \frac{2\pi R^{3/2}}{\sqrt{G \cdot M}} \cr &\approx  9.62 \times 10^{-7}\, R^{3/2}\; \rm s\end{aligned}.

<h3>c)</h3>

Convert 24.6\; \rm \text{hours} to seconds:

24.6 \times 3600 = 88560\; \rm s

Solve the equation for R:

9.62 \times 10^{-7}\, R^{3/2}= 88560.

R \approx 2.04 \times 10^7\; \rm m.

<h3>d)</h3>

If an object is at its escape speed, its kinetic energy (KE) plus its gravitational potential energy (GPE) should be equal to zero.

\displaystyle \text{GPE} = -\frac{G \cdot M \cdot m}{r} (Note the minus sign in front of the fraction. GPE should always be negative or zero.)

\displaystyle \text{KE} = \frac{1}{2} \, m \cdot v^{2}.

Solve for v. The value of m shouldn't matter, for it would be eliminated from both sides of the equation.

\displaystyle -\frac{G \cdot M \cdot m}{r} + \frac{1}{2} \, m \cdot v^{2}= 0.

\displaystyle v = \sqrt{\frac{2\, G \cdot M}{R}} \approx 5.01\times 10^{3}\; \rm m\cdot s^{-1}.

5 0
4 years ago
How to find direction of magnetic field.
Tju [1.3M]

unlock your third eye and youll be able to see it

6 0
3 years ago
Other questions:
  • Auroras are frequently seen
    5·1 answer
  • A uniform rod of length L rests on a frictionless horizontal surface. The rod pivots about a fixed frictionless axis at one end.
    14·1 answer
  • In the southern hemisphere, the longest day of the year happens during _____.
    9·2 answers
  • 1.4 The inside of a sports hall measures 80 m
    9·1 answer
  • A 2-lb slider is propelled upward at A along the fixed curved bar which lies in a vertical plane. If the slider is observed to h
    10·1 answer
  • A 0.12 kg body undergoes simple harmonic motion of amplitude 8.5 cm and period 0.20 s. (a) What is themagnitude of the maximum f
    13·1 answer
  • A river has a steady speed of 0.480 m/s. a student swims upstream a distance of 1.00 km and swims back to the starting point. (a
    13·1 answer
  • In a parallel circuit, each resistor has:
    12·1 answer
  • PLZZZ HELP!!! 80PTS!!!
    7·1 answer
  • Why is nuclear energy able to be used for practical purposes? the reactions are controlled to regulate energy output. the reacti
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!