Answer:
The principle of momentum conservation states that if there no external force the total momentum of the system before and after the collision is conserved.
Since momentum is a vector, we should investigate the directions and magnitudes of initial and final momentum.

If the first ball hits the second ball with an angle, we should separate the x- and y-components of the momentum (or velocity), and apply conservation of momentum separately on x- and y-directions.
Answer:
There will be 1800 W power consumption in heater
Explanation:
We have given current flowing in the heater I = 15 A
Voltage on which heater is operating V = 120 volt
We have to find the power consumption in the heater
We know that power consumption is given by P = VI
So power consumption in heater = 120 × 15 = 1800 W
So there will be 1800 W power consumption in heater
The amount of heat given by the water to the block of ice can be calculated by using

where

is the mass of the water

is the specific heat capacity of water

is the variation of temperature of the water.
Using these numbers, we find

This is the amount of heat released by the water, but this is exactly equal to the amount of heat absorbed by the ice, used to melt it into water according to the formula:

where

is the mass of the ice while

is the specific latent heat of fusion of the ice.
Re-arranging this formula and using the heat Q that we found previously, we can calculate the mass of the ice:
Answer:
i. Cv =3R/2
ii. Cp = 5R/2
Explanation:
i. Cv = Molar heat capacity at constant volume
Since the internal energy of the ideal monoatomic gas is U = 3/2RT and Cv = dU/dT
Differentiating U with respect to T, we have
= d(3/2RT)/dT
= 3R/2
ii. Cp - Molar heat capacity at constant pressure
Cp = Cv + R
substituting Cv into the equation, we have
Cp = 3R/2 + R
taking L.C.M
Cp = (3R + 2R)/2
Cp = 5R/2