Answer:
explanation of this effect is the photoelectric effect
Explanation:
Let's describe the process, when light of large wavelength falls, this implies a small energy, according to Planck's equation
E = h f =
the energy of the photons is not enough to carry out an electronic transition between two states of the material, when we decrease the wavelength (the energy of the photons increases), the point is reached where the energy of the beam is equal to some energy of a transition, by which the electrons are promoted and since we can see a certain charge, as the atoms are neutral, some electrons must be removed from the material, this is represented in the macroscopic case as the work function of the material, consequently a unbalanced load that is what we can measure.
When we increase the lightning intensity, what we do is that we increase the number of photons and if each photon can remove an electron, by removing the electrons the difference between it and the positive charge (fixed in the nuclei) increases.
We can analyze the interaction of the photon and the electron as a particular collision.
The explanation of this effect was made by Einstein in his explained of the photoelectric effect
Answer:
t = 2 seconds
Explanation:
In 2nd question, the question is given the attached figure.
Initial speed of the bus, u = 0
Acceleration of the bus, a = 8 m/s²
Final speed, v = 16 m/s
We need to find the time taken by the car to reach the stop. Acceleration of an object is given by :
t is time taken
The bus will take 2 seconds to reach the stop.
Answer:
Selenium is a semiconductor
Explanation:
Selenium is a semiconductor.
Elements in the column IV and VI of the periodic table are referred to as Semiconductor.
Selenium lies in the column VI along with Tellurium
Some other elements of the column IV are silicon, germanium, and tin
Answer:Ultraviolet radiation has shorter wavelengths and higher energy than infrared radiation.
Explanation: Electromagnetic radiation radiations which have both electrical and magnetic properties,they can be transmitted through space or through a medium.
It includes Gamma radiation, infra-red, visible light, Ultraviolet radiation etc they occur with different wavelength, the lower the wavelength the higher the Energy dissipated per photon. According to their order of decreasing wavelength and increased energy they are classified as follows.
RADIO WAVE, MICRO WAVE, INFRA-RED, VISIBLE LIGHT, ULTRAVIOLET RAY, X-RAY, GAMMA RAYS.
Run inside if you are outdoors
.