Answer:
x<6/5, x>14/5
Step-by-step explanation:
Steps
$5\left|x-2\right|+4>8$
$\mathrm{Subtract\:}4\mathrm{\:from\:both\:sides}$
$5\left|x-2\right|+4-4>8-4$
$\mathrm{Simplify}$
$5\left|x-2\right|>4$
$\mathrm{Divide\:both\:sides\:by\:}5$
$\frac{5\left|x-2\right|}{5}>\frac{4}{5}$
$\mathrm{Simplify}$
$\left|x-2\right|>\frac{4}{5}$
$\mathrm{Apply\:absolute\:rule}:\quad\mathrm{If}\:|u|\:>\:a,\:a>0\:\mathrm{then}\:u\:<\:-a\:\quad\mathrm{or}\quad\:u\:>\:a$
$x-2<-\frac{4}{5}\quad\mathrm{or}\quad\:x-2>\frac{4}{5}$
Show Steps
$x-2<-\frac{4}{5}\quad:\quad x<\frac{6}{5}$
Show Steps
$x-2>\frac{4}{5}\quad:\quad x>\frac{14}{5}$
$\mathrm{Combine\:the\:intervals}$
$x<\frac{6}{5}\quad\mathrm{or}\quad\:x>\frac{14}{5}$
Y = kx - 8. The variable k can be any negative value.
The answer is C, hope this helps
Answer:
1. distance = sqrt( (7-7)^2+(2- -8)^2) = 10
2. check out desk (0,0 ) => distance = sqrt( (0- -9)^2+(0-0)^2) = 9
3. last corner ( -3, 4)
4. area = sqrt( (-10- -10)^2+(10-4)^2) x sqrt( (-3- -10)^2+(10-10)^2) = 6x7 =42
5. check desk (0,0), south direction = negative y axis => P_beginning (0,-20), P_end (0,-(20+25)) = (0,-45)
6. A(-2,-1) and B(4,-1) lie in y =-1. AB = sqrt( (-2- 4)^2+(-1- -1)^2) =6
=> area = 3.6x6 =21.6
=> peri = 2x(3.6+6) = 19.2
7. A(-5,4) and B(2,4), AB = sqrt( (-5- 2)^2+(4- -4)^2) = 7 => AB is base
=> p = peri = 7+ 8.3x2 = 23.6
=> area = sqrt[px(p-7)x(p-8.3)x(p-8.3)]
=sqrt[23.6x(23.6-7)x(23.6-8.3)x(23.6-8.3)] = 302.8