Answer:
The minimum sample size is n = 75 so that the desired margin of error is 5 or less.
Step-by-step explanation:
We are given the following in the question:
Population variance = 484
Standard deviation =
![\sigma^2 = 484\\\sigma =\sqrt{484} = 22](https://tex.z-dn.net/?f=%5Csigma%5E2%20%3D%20484%5C%5C%5Csigma%20%3D%5Csqrt%7B484%7D%20%3D%2022)
Confidence level = 0.95
Significance level = 0.05
Margin of error = 5
Formula:
Margin of error =
![E = z\times \dfrac{\sigma}{\sqrt{n}}\\\\n = (\dfrac{z\times \sigma}{E})^2](https://tex.z-dn.net/?f=E%20%3D%20z%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D%5C%5C%5C%5Cn%20%3D%20%28%5Cdfrac%7Bz%5Ctimes%20%5Csigma%7D%7BE%7D%29%5E2)
![z_{critical}\text{ at}~\alpha_{0.05} = 1.96](https://tex.z-dn.net/?f=z_%7Bcritical%7D%5Ctext%7B%20at%7D~%5Calpha_%7B0.05%7D%20%3D%201.96)
Putting values, we get
![E\leq 5\\\\1.96\times \dfrac{22}{\sqrt{n}} \leq 5\\\\\sqrt{n} \geq 1.96\times \dfrac{22}{5}\\\\n \geq (1.96\times \dfrac{22}{5})^2\\\\n \geq 74.373](https://tex.z-dn.net/?f=E%5Cleq%205%5C%5C%5C%5C1.96%5Ctimes%20%5Cdfrac%7B22%7D%7B%5Csqrt%7Bn%7D%7D%20%5Cleq%205%5C%5C%5C%5C%5Csqrt%7Bn%7D%20%5Cgeq%201.96%5Ctimes%20%5Cdfrac%7B22%7D%7B5%7D%5C%5C%5C%5Cn%20%5Cgeq%20%281.96%5Ctimes%20%5Cdfrac%7B22%7D%7B5%7D%29%5E2%5C%5C%5C%5Cn%20%5Cgeq%2074.373)
Thus, the minimum sample size is n = 75 so that the desired margin of error is 5 or less.
Answer:
<u>TO FIND :-</u>
- Length of all missing sides.
<u>FORMULAES TO KNOW BEFORE SOLVING :-</u>
<u>SOLUTION :-</u>
1) θ = 16°
Length of side opposite to θ = 7
Hypotenuse = x
![=> \sin 16 = \frac{7}{x}](https://tex.z-dn.net/?f=%3D%3E%20%5Csin%2016%20%3D%20%5Cfrac%7B7%7D%7Bx%7D)
![=> \frac{7}{x} = 0.27563......](https://tex.z-dn.net/?f=%3D%3E%20%5Cfrac%7B7%7D%7Bx%7D%20%3D%200.27563......)
≈ 25.3
2) θ = 29°
Length of side opposite to θ = 6
Hypotenuse = x
![=> \sin 29 = \frac{6}{x}](https://tex.z-dn.net/?f=%3D%3E%20%5Csin%2029%20%3D%20%5Cfrac%7B6%7D%7Bx%7D)
![=> \frac{6}{x} = 0.48480......](https://tex.z-dn.net/?f=%3D%3E%20%5Cfrac%7B6%7D%7Bx%7D%20%3D%200.48480......)
≈ 12.3
3) θ = 30°
Length of side opposite to θ = x
Hypotenuse = 11
![=> \sin 30 = \frac{x}{11}](https://tex.z-dn.net/?f=%3D%3E%20%5Csin%2030%20%3D%20%5Cfrac%7Bx%7D%7B11%7D)
![=> \frac{x}{11} = 0.5](https://tex.z-dn.net/?f=%3D%3E%20%5Cfrac%7Bx%7D%7B11%7D%20%3D%200.5)
4) θ = 43°
Length of side adjacent to θ = x
Hypotenuse = 12
![=> \cos 43 = \frac{x}{12}](https://tex.z-dn.net/?f=%3D%3E%20%5Ccos%2043%20%3D%20%5Cfrac%7Bx%7D%7B12%7D)
![=> \frac{x}{12} = 0.73135......](https://tex.z-dn.net/?f=%3D%3E%20%5Cfrac%7Bx%7D%7B12%7D%20%3D%200.73135......)
≈ 8.8
5) θ = 55°
Length of side adjacent to θ = x
Hypotenuse = 6
![=> \cos 55 = \frac{x}{6}](https://tex.z-dn.net/?f=%3D%3E%20%5Ccos%2055%20%3D%20%5Cfrac%7Bx%7D%7B6%7D)
![=> \frac{x}{6} = 0.57357......](https://tex.z-dn.net/?f=%3D%3E%20%5Cfrac%7Bx%7D%7B6%7D%20%3D%200.57357......)
≈ 3.4
6) θ = 73°
Length of side adjacent to θ = 8
Hypotenuse = x
![=> \cos 73 = \frac{8}{x}](https://tex.z-dn.net/?f=%3D%3E%20%5Ccos%2073%20%3D%20%5Cfrac%7B8%7D%7Bx%7D)
![=> \frac{8}{x} = 0.29237......](https://tex.z-dn.net/?f=%3D%3E%20%5Cfrac%7B8%7D%7Bx%7D%20%3D%200.29237......)
≈ 27.3
7) θ = 69°
Length of side opposite to θ = 12
Length of side adjacent to θ = x
![=> \tan 69 = \frac{12}{x}](https://tex.z-dn.net/?f=%3D%3E%20%5Ctan%2069%20%3D%20%5Cfrac%7B12%7D%7Bx%7D)
![=> \frac{12}{x} = 2.60508......](https://tex.z-dn.net/?f=%3D%3E%20%5Cfrac%7B12%7D%7Bx%7D%20%3D%202.60508......)
≈ 4.6
8) θ = 20°
Length of side opposite to θ = 11
Length of side adjacent to θ = x
![=> \tan 20 = \frac{11}{x}](https://tex.z-dn.net/?f=%3D%3E%20%5Ctan%2020%20%3D%20%5Cfrac%7B11%7D%7Bx%7D)
![=> \frac{11}{x} = 0.36397......](https://tex.z-dn.net/?f=%3D%3E%20%5Cfrac%7B11%7D%7Bx%7D%20%3D%200.36397......)
≈ 30.2
Answer:
12cm and 16cm
Step-by-step explanation:
The hypotenuse of the right angle triangle = 20cm
let the other two sides be x and y;
The difference;
x = y - 4
Problem:
Find x and y;
Solution:
According to the pythagoras theorem;
x² + y² = 20² ------ i
x² + y² = 400 ----- i
and x - y = 4 ---- ii
So; x = 4 + y
Now input the value into equation (i);
(y + 4)² + y² = 400
(y+4)(y+4) + y² = 400
y² + y² + 4y + 4y + 16 = 400
2y² + 8y + 16 = 400
2y² + 8y + 16 -400 = 0
2y² + 8y - 384 = 0;
y² + 4y - 192 = 0
Factorize the equation;
y² + 16y - 12y - 192 = 0
y(y + 16) - 12(y + 16) = 0
(y-12)(y + 16) = 0
y -12 = 0 or y+ 16 = 0
y = 12 or -16
It is not realistic for the length of a body to be a negative value, so y= 12;
since;
x - y = 4,
x = 4 + 12
x = 16