Answer:
x = 6
Step-by-step explanation:
<em>If </em><em>two secants</em><em> are drawn from</em><em> a point outside </em><em>the circle, then the </em><em>product</em><em> of the lengths of</em><em> one secant </em><em>and its</em><em> external segment</em><em> equals the </em><em>product </em><em>of the lengths of</em><em> the other secant </em><em>and its</em><em> external segment</em><em> </em>
Let us solve the question.
∵ There is a circle in the given figure
∵ There are two secants intersected at a point outside the circle
∵ The length of one of them = 8
∵ The length of its external segment = x
∵ The length of the other secant = 4 + 8 = 12
∵ The length of its external segment = 4
→ By using the rule above
∴ 8 × x = 12 × 4
∴ 8x = 48
→ Divide both sides by 8
∴ x = 6
Answer:
It's 2, 1, and y = 2x + 1.
Step-by-step explanation:
You can see the rise is 2 and the run is 1, making the slope = 2, and the y-intercept is 1 because that is where it crosses the y axis. Once you have the slope and y intercept, you can put it in a function, with the form being y=2x+1, the slope being the number before the x and the y-int value being after the x.
15184.6
V = pi x r^ 2
H = pi x 13^2 x 28.6
Length = 11
Width = 9
Area we need = 126
So Area = length * width
126 = 11 * 9
Now.. this is obviously wrong.. they want us to find the correct length..
126 = L * 9
126/9 = L
L = 14
Now since they ask about how much farther you need to extend, take the final and subtract from the original
14 - 11 = 3
Answer is 3.