Step-by-step explanation:
The plumber's daily earnings have a mean of $145 per day with a standard deviation of
$16.50.
We want to find the probability that the plumber earns between $135 and
$175 on a given day, if the daily earnings follow a normal distribution.
That is we want to find P(135 <X<175).
Let us convert to z-scores using
![z = \frac{x - \mu}{ \sigma}](https://tex.z-dn.net/?f=z%20%3D%20%20%5Cfrac%7Bx%20-%20%20%5Cmu%7D%7B%20%5Csigma%7D%20)
This means that:
![P(135 \: < \: X \: < \: 175) = P( \frac{135 - 145}{16.5} \: < \: z \: < \frac{175 - 145}{ 16.5} )](https://tex.z-dn.net/?f=P%28135%20%20%5C%3A%20%3C%20%20%5C%3A%20X%20%20%5C%3A%20%3C%20%20%5C%3A%20175%29%20%3D%20P%28%20%5Cfrac%7B135%20-%20145%7D%7B16.5%7D%20%20%5C%3A%20%3C%20%20%5C%3A%20%20z%20%5C%3A%20%20%3C%20%20%5Cfrac%7B175%20-%20145%7D%7B%2016.5%7D%20%29%3C%2Fp%3E%3Cp%3E)
We simplify to get:
![P(135 \: < \: X \: < \: 175) = P( - 0.61\: < \: z \: < 1.82 )](https://tex.z-dn.net/?f=P%28135%20%20%5C%3A%20%3C%20%20%5C%3A%20X%20%20%5C%3A%20%3C%20%20%5C%3A%20175%29%20%3D%20P%28%20%20-%200.61%5C%3A%20%3C%20%20%5C%3A%20%20z%20%5C%3A%20%20%3C%20%201.82%20%29)
From the standard n normal distribution table,
P(z<1.82)=0.9656
P(z<-0.61)=0.2709
To find the area between the two z-scores, we subtract to obtain:
P(-0.61<z<1.82)=0.9656-0.2709=0.6947
This means that:
![P(135 \: < \: X \: < \: 175) =0.69](https://tex.z-dn.net/?f=P%28135%20%20%5C%3A%20%3C%20%20%5C%3A%20X%20%20%5C%3A%20%3C%20%20%5C%3A%20175%29%20%3D0.69)
The correct choice is C.
50° <span>is the measure of angle AFB</span>
X=268y bekaoownebeiwowobebr
The system of equations:2 y = - x - 12 y = x + 5---------------------- x - 1 = x + 5- 2 x = 5 + 1- 2 x = 6x = - 6 : 2x = - 32 y = - 3 + 52 y = 2y = 1The solution is ( - 3 , 1 ).Answer: The x-coordinate of the solution to the system is: x = - 3.
Read more on Brainly -
brainly.com/sf/question/1578438
60 minutes is 20% of 300 minutes