Using identity, evaluate 94 x 106,
1 answer:
Answer:
<em>9964</em><em> </em><em>is</em><em> </em><em>the correct answer</em>
<em>Given 94×106</em>
<em>We can write 94 as 100−6 and also 106 as 100+6</em>
<em>We know that (a+b)×(a−b)=a </em><em>^</em><em>2</em><em>−b </em><em>^</em><em>2</em>
<em>Here a=100 and b=6</em>
<em>Here a=100 and b=6Applying the above formula we get</em>
<em>(100+6)×(100−6)=(100) </em><em>^</em><em>2 −(6) </em><em>^</em><em>2</em>
<em>(100+6)×(100−6)=10000−36=9964</em>
You might be interested in
∵AB=CB
∴∠BAC=∠BCA
∵AB bisect ∠MAT
∴∠MAB=∠TAB
Hope my answer helped u :)
Take a pic of whole page so I can see instructions
(-4 + 5i) + 2(1 + 3i)
- Distribute 2 inside the parentheses.
(-4 + 5i) + 2 + 6i
<h3>-2 + 11i</h3>
40 divided by 8 = 5
Mark Me Brainliest Please
Answer:
y€ R : y greater than or equal to 1