The answer would be A. When using Cramer's Rule to solve a system of equations, if the determinant of the coefficient matrix equals zero and neither numerator determinant is zero, then the system has infinite solutions. It would be hard finding this answer when we use the Cramer's Rule so instead we use the Gauss Elimination. Considering the equations:
x + y = 3 and <span>2x + 2y = 6
Determinant of the equations are </span>
<span>| 1 1 | </span>
<span>| 2 2 | = 0
</span>
the numerator determinants would be
<span>| 3 1 | . .| 1 3 | </span>
<span>| 6 2 | = | 2 6 | = 0.
Executing Gauss Elimination, any two numbers, whose sum is 3, would satisfy the given system. F</span>or instance (3, 0), <span>(2, 1) and (4, -1). Therefore, it would have infinitely many solutions. </span>
Let s represent the length of any one side of the original square. The longer side of the resulting rectangle is s + 9 and the shorter side s - 2.
The area of this rectangle is (s+9)(s-2) = 60 in^2.
This is a quadratic equation and can be solved using various methods. Let's rewrite this equation in standard form: s^2 + 7s - 18 = 60, or:
s^2 + 7s - 78 = 0. This factors as follows: (s+13)(s-6)=0, so that s = -13 and s= 6. Discard s = -13, since the side length cannot be negative. Then s = 6, and the area of the original square was 36 in^2.
I would say its A but I'm not 100%
Answer:
I know im late but the answer is 275 I just took the test on k-12
Step-by-step explanation: