The model given is:

The term in the parentheses represents the change of rate of the model. If the number is the parentheses is less than 1, we call it <em>exponential decay</em>.
If the number in parentheses is bigger than 1, we call it exponential growth.
In this case, the correct option is "decaying"
The number in parentheses let's call it R, is:

Where r is the rate of change. To find it:

To convert to percentage, we convert by multiplying by 100::

The second answer is 0.45%
And since t is the time passed in hours, and has a "60" multiplying it, the last answer is: Every 60 hours
<em>The final answer is:</em>
The function is exponentially decaying at a rate of 0.45% evary 60 hours.
Answer:

Step-by-step explanation:

I hope I helped you^_^
The answers are B & C.
First thing to d
o is convert Radians to Degrees. 1 radians = 180/pi
. So, 3.5 radians times 180 divided by

= 200.5352283 or which could be rounded of to 200.54. Thus, confirming choice letter C and negating choices A and D.
Next thing to check is choice letter B. To do this, we need to convert the decimal value of the computed answer which is 0.5352283 to minutes and seconds by the following conversion factors.
1 degree = 60 mins
1 minute = 60 seconds
Now, we multiply 0.5352283 by 60 to get 32.113698 minutes, thus
32 minutesthen multiply 0.113698 by 60 to get 6.82188 ~
7 seconds.therefore, conversion would yield an answer 200 degrees 32 minutes and 7 seconds.
Answer:
A=1 B=3 C=1 D=2 E=6 F=8
Step-by-step explanation:
the second part is b= y=3 times2^x
Answer:
x = 4 ±9i
Step-by-step explanation:
x^2 - 8x + 97 = 0
Complete the square by subtracting 97 from each side
x^2 - 8x =- 97
Take the coefficient of x
-8 and divide by 2
-8/2 = -4
Then square it
(-4)^2 = 16
Add it to each side
x^2 - 8x + 16 = -97+16
(x-4)^2 = -81
Take the square root of each side
x-4 = ±sqrt(-81)
x-4 = ±9i
Add 4 to each side
x = 4 ±9i