Answer:
17-2*3-8=3
Step-by-step explanation:
We have given:
17_2_3_8=3 insert + - × or ÷ symbols to make each statement true?
<u>Solution:</u>
We will insert multiplication sign between 2 and 3 and then subtract all the terms
<u>17-2*3-8=3</u>
We will solve it according to the DMAS rule:
DMAS rule is followed when multiple arithmetic operations are there in a given problem like addition, subtraction, multiplication and division. It tells they should be performed in order of Division, Multiplication, Addition and Subtraction. Without DMAS rule all mathematical equations will come up with different answers.
Lets solve the expression and check whether the L.H.S = R.H.S
17-2*3-8=3
17-6-8=3
11-8=3
3 =3
<em>Be sure to multiply first and then subtract</em>
⇒You can also insert addition sign in place of multiplication. It will give the same answer
Answer:
ahsbdbsbevdjsbebdbdhdbdhdbd
It has two pairs of same angles: that means that the opposite sides are parallel: this makes it a parallelogram.
Answer:
Equilateral triangle: All three sides are equal.
Isosceles triangle: All two sides are equal.
Scalene triangle: No sides are equal.
Step-by-step explanation: Step 1: Label the given points as A, B, and C, and plot them as vertices of a triangle with connecting lines to draw the triangle we are working to identify.
Step 2: Calculate the side length AB using the distance formula.
Step 3: Calculate the side length BC using the distance formula.
Step 4: Calculate the side length AC using the distance formula.
Step 5: Compare the side lengths AB, BC, and AC from the previous steps to define the triangle type.
Answer:
9 terms
Step-by-step explanation:
Given:
1, 8, 28, 56, ..., 1
Required
Determine the number of sequence
To determine the number of sequence, we need to understand how the sequence are generated
The sequence are generated using
![\left[\begin{array}{c}n&&r\end{array}\right] = \frac{n!}{(n-r)!r!}](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dn%26%26r%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7Bn%21%7D%7B%28n-r%29%21r%21%7D)
Where n = 8 and r = 0,1....8
When r = 0
![\left[\begin{array}{c}8&&0\end{array}\right] = \frac{8!}{(8-0)!0!} = \frac{8!}{8!0!} = 1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%260%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-0%29%210%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B8%210%21%7D%20%3D%201)
When r = 1
![\left[\begin{array}{c}8&&1\end{array}\right] = \frac{8!}{(8-1)!1!} = \frac{8!}{7!1!} = \frac{8 * 7!}{7! * 1} = \frac{8}{1} = 8](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%261%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-1%29%211%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B7%211%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%21%7D%7B7%21%20%2A%201%7D%20%3D%20%5Cfrac%7B8%7D%7B1%7D%20%3D%208)
When r = 2
![\left[\begin{array}{c}8&&2\end{array}\right] = \frac{8!}{(8-2)!2!} = \frac{8!}{6!2!} = \frac{8 * 7 * 6!}{6! * 2 *1} = \frac{8 * 7}{2 *1} =2 8](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%262%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-2%29%212%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B6%212%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%21%7D%7B6%21%20%2A%202%20%2A1%7D%20%3D%20%5Cfrac%7B8%20%2A%207%7D%7B2%20%2A1%7D%20%3D2%208)
When r = 3
![\left[\begin{array}{c}8&&3\end{array}\right] = \frac{8!}{(8-3)!3!} = \frac{8!}{5!3!} = \frac{8 * 7 * 6 * 5!}{5! *3* 2 *1} = \frac{8 * 7 * 6}{3 *2 *1} = 56](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%263%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-3%29%213%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B5%213%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%20%2A%205%21%7D%7B5%21%20%2A3%2A%202%20%2A1%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%7D%7B3%20%2A2%20%2A1%7D%20%3D%2056)
When r = 4
![\left[\begin{array}{c}8&&4\end{array}\right] = \frac{8!}{(8-4)!4!} = \frac{8!}{4!3!} = \frac{8 * 7 * 6 * 5 * 4!}{4! *4*3* 2 *1} = \frac{8 * 7 * 6*5}{4*3 *2 *1} = 70](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%264%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-4%29%214%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B4%213%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%20%2A%205%20%2A%204%21%7D%7B4%21%20%2A4%2A3%2A%202%20%2A1%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%2A5%7D%7B4%2A3%20%2A2%20%2A1%7D%20%3D%2070)
When r = 5
![\left[\begin{array}{c}8&&5\end{array}\right] = \frac{8!}{(8-5)!5!} = \frac{8!}{5!3!} = \frac{8 * 7 * 6 * 5!}{5! *3* 2 *1} = \frac{8 * 7 * 6}{3 *2 *1} = 56](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%265%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-5%29%215%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B5%213%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%20%2A%205%21%7D%7B5%21%20%2A3%2A%202%20%2A1%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%7D%7B3%20%2A2%20%2A1%7D%20%3D%2056)
When r = 6
![\left[\begin{array}{c}8&&6\end{array}\right] = \frac{8!}{(8-6)!6!} = \frac{8!}{6!2!} = \frac{8 * 7 * 6!}{6! * 2 *1} = \frac{8 * 7}{2 *1} = 28](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%266%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-6%29%216%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B6%212%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%20%2A%206%21%7D%7B6%21%20%2A%202%20%2A1%7D%20%3D%20%5Cfrac%7B8%20%2A%207%7D%7B2%20%2A1%7D%20%3D%2028)
When r = 7
![\left[\begin{array}{c}8&&7\end{array}\right] = \frac{8!}{(8-7)!7!} = \frac{8!}{7!1!} = \frac{8 * 7!}{7! * 1} = \frac{8}{1} = 8](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%267%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-7%29%217%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B7%211%21%7D%20%3D%20%5Cfrac%7B8%20%2A%207%21%7D%7B7%21%20%2A%201%7D%20%3D%20%5Cfrac%7B8%7D%7B1%7D%20%3D%208)
When r = 8
![\left[\begin{array}{c}8&&8\end{array}\right] = \frac{8!}{(8-8)!8!} = \frac{8!}{8!0!} = 1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%26%268%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B8%21%7D%7B%288-8%29%218%21%7D%20%3D%20%5Cfrac%7B8%21%7D%7B8%210%21%7D%20%3D%201)
The full sequence is: 1,8,28,56,70,56,28,8,1
And the number of terms is 9