Answer:
I can't even see anything can you reupload your answer, please?
Step-by-step explanation:
Answer:
B) (-2,1)
Step-by-step explanation:
The solution is where the two lines intersect, in this case at (-2,1)
Hope this helps! :)
Each smaller donation was for $20 The largest donation was $15 greater than the smaller donation. First, determine the size of each donation. Since they are in a ratio of 4:4:7, it's easiest to add the ratios together (4+4+7) = 15. Then divide the total donation by that sum (75/15) = 5. Finally, multiply 5 by each of the ratios. 5 * 4 = 20, 5 * 4 = 20, and 5 * 7 = 35 So the 2 smaller donations were $20 each, and the largest donation was for $35. The largest donation was $35 - $20 = $15 larger than one of the smaller donations.
Answer:
(E) 0.71
Step-by-step explanation:
Let's call A the event that a student has GPA of 3.5 or better, A' the event that a student has GPA lower than 3.5, B the event that a student is enrolled in at least one AP class and B' the event that a student is not taking any AP class.
So, the probability that the student has a GPA lower than 3.5 and is not taking any AP classes is calculated as:
P(A'∩B') = 1 - P(A∪B)
it means that the students that have a GPA lower than 3.5 and are not taking any AP classes are the complement of the students that have a GPA of 3.5 of better or are enrolled in at least one AP class.
Therefore, P(A∪B) is equal to:
P(A∪B) = P(A) + P(B) - P(A∩B)
Where the probability P(A) that a student has GPA of 3.5 or better is 0.25, the probability P(B) that a student is enrolled in at least one AP class is 0.16 and the probability P(A∩B) that a student has a GPA of 3.5 or better and is enrolled in at least one AP class is 0.12
So, P(A∪B) is equal to:
P(A∪B) = P(A) + P(B) - P(A∩B)
P(A∪B) = 0.25 + 0.16 - 0.12
P(A∪B) = 0.29
Finally, P(A'∩B') is equal to:
P(A'∩B') = 1 - P(A∪B)
P(A'∩B') = 1 - 0.29
P(A'∩B') = 0.71