Answer:
The degree of a polynomial refers to the highest degree of its individual terms having non-zero coefficients.
Step-by-step explanation:
The degree of a polynomial refers to the highest degree of its individual terms having non-zero coefficients. For example;
A quadratic polynomial is a polynomial of degree 2. This polynomial takes the general form;
where a, b, and c are constants. This is usually referred to as a quadratic polynomial in x since x is the variable. The highest power of x in the polynomial is 2, hence the degree of any quadratic polynomial is 2.
A second example, consider the cubic polynomial;

The degree of this polynomial is 3.
Answer:
The area is 161
Step-by-step explanation:
brainliest?
Answer:
C. t=$8, s=$12
Step-by-step explanation:
3($8)+4($12)=$72
4($8)+1($12)=$44
Answer: radius = 47.8 inches
Step-by-step explanation:
An arc is a portion of the circumference of the circle. The formula for determining the length of an arc is expressed as
Length of arc = θ/360 × 2πr
Where
θ represents the central angle.
r represents the radius of the circle.
π is a constant whose value is 3.14
From the information given,
θ = 60 degrees
Length of arc = 50 inches
Therefore,
50 = 60/360 × 2 × 3.14 × r
Cross multiplying by 360, it becomes
18000 = 376.8r
r = 18000/376.8
r = 47.8 inches
Answer:
She went on the slide 8 times and on the roller coaster 4 times
Step-by-step explanation:
We convert each statements to a mathematical equation.
Firstly, let's represent the number of times she went on the coaster with R and the number of times on the slide with S. We know quite well she went on 12 rides. Hence the summation of both number of times yield 12.
Mathematically, R + S = 12. ........(i)
Now we also know her total wait time was 3hours. Since an hour equals 60 minutes, her total wait time would equal 180 minutes.
To get a mathematical representation for the wait time, we multiply the number of roller coaster rides by 25 and that of the slides by 10.
Mathematically, 25R + 10S = 180 .......(ii)
Here we now have two equations that we can solve simultaneously.
From equation 1 we can say R = 12 - S. We can then substitute this into equation 2 to yield the following:
25(12 - s) + 10s = 180
300 - 25s + 10s = 180
300 - 25s + 10s = 180
300 - 15s = 180
15s = 300 - 180
15s = 120
S = 120/15
S = 8
S = 8 , and R = 12 - S = 12 - 8 = 4