Answer:
The length of the segment F'G' is 7.
Step-by-step explanation:
From Linear Algebra we define reflection across the y-axis as follows:
,
(Eq. 1)
In addition, we get this translation formula from the statement of the problem:
,
(Eq. 2)
Where:
- Original point, dimensionless.
- Transformed point, dimensionless.
If we know that
and
, then we proceed to make all needed operations:
Translation




Reflection


Lastly, we calculate the length of the segment F'G' by Pythagorean Theorem:
![F'G' = \sqrt{(5-5)^{2}+[(-1)-6]^{2}}](https://tex.z-dn.net/?f=F%27G%27%20%3D%20%5Csqrt%7B%285-5%29%5E%7B2%7D%2B%5B%28-1%29-6%5D%5E%7B2%7D%7D)

The length of the segment F'G' is 7.
<span>Let x = the width
:
It says,"The length of a rectangle is 4 less than 3 times the width." write that as:
L = 3x - 4
:
If the perimeter is 40, find the dimensions of the rectangle.
:
We know: 2L + 2W = 40
:
Substitute (3x-4) for L and x for W
2(3x-4) + 2x = 40
:
6x - 8 + 2x = 40; Multiplied what's inside the brackets
:
6x + 2x = 40 + 8; do some basic algebra to find x; (added 8 to both sides)
:
8x = 48
:
x = 48/8
:
x = 6 which is the width
:
It said that L = 3x - 4, therefore:
L = 3(6) - 4
L = 18 - 4
L = 14; is the length
:
Check our solutions in the perimeter:
2(14) + 2(6) =
28 + 12 = 40</span>
Answer: well if p= $1000 and t=6 and r-11 % then 6k+11=1000 then 11- 1000 is 6k=989 divide 6/ 164.83 i think
Step-by-step explanation: