1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivenika [448]
2 years ago
15

Kelly buys a box of greeting cards for $13.00. Each individual card costs

Mathematics
1 answer:
Maksim231197 [3]2 years ago
6 0

Answer:

13/.52=25

Step-by-step explanation:

You might be interested in
Can someone please give me the answer for this im so confused
liubo4ka [24]
The correct answer is 400 yrds
Hope this helps
6 0
3 years ago
How do I add mixed numbers<br>8 1/2 +1/6<br>​
sergij07 [2.7K]

Answer:

<u><em>26/3  is your answer as a improper fraction </em></u>

<u><em>8.6 is your answer as a decimal </em></u>

<u><em>8 2/3 is your answer as a mixed number </em></u>

How to add mixed numbers Step-by-step:

1) find the least common denominator

2) find the equivalent fractions  

3) add the the fractions, add the whole numbers

4) write your answer in lowest terms

6 0
3 years ago
Read 2 more answers
Please answer below :-)
Serjik [45]

Answer:

B. 88.8

Step-by-step explanation:

let x represent class y

(x+71.2)/2=80   multiply each side by 2

x+71.2=160      subtract 71.2 by both sides

x=88.8

or

trial an error

replace x with each of the numbers and see if it plugs in.

example:

(80.5+71.2)/2=80

151.7/2=80

75.85=80?

false. incorrect

another example:

(88.8+71.2)/2=80

160/2=80

80=80?

true. correct

7 0
3 years ago
f(x) = 3 cos(x) 0 ≤ x ≤ 3π/4 evaluate the Riemann sum with n = 6, taking the sample points to be left endpoints. (Round your ans
Kruka [31]

Answer:

\int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx\approx 3.099558

Step-by-step explanation:

We want to find the Riemann sum for \int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx with n = 6, using left endpoints.

The Left Riemann Sum uses the left endpoints of a sub-interval:

\int_{a}^{b}f(x)dx\approx\Delta{x}\left(f(x_0)+f(x_1)+2f(x_2)+...+f(x_{n-2})+f(x_{n-1})\right)

where \Delta{x}=\frac{b-a}{n}.

Step 1: Find \Delta{x}

We have that a=0, b=\frac{3\pi }{4}, n=6

Therefore, \Delta{x}=\frac{\frac{3 \pi}{4}-0}{6}=\frac{\pi}{8}

Step 2: Divide the interval \left[0,\frac{3 \pi}{4}\right] into n = 6 sub-intervals of length \Delta{x}=\frac{\pi}{8}

a=\left[0, \frac{\pi}{8}\right], \left[\frac{\pi}{8}, \frac{\pi}{4}\right], \left[\frac{\pi}{4}, \frac{3 \pi}{8}\right], \left[\frac{3 \pi}{8}, \frac{\pi}{2}\right], \left[\frac{\pi}{2}, \frac{5 \pi}{8}\right], \left[\frac{5 \pi}{8}, \frac{3 \pi}{4}\right]=b

Step 3: Evaluate the function at the left endpoints

f\left(x_{0}\right)=f(a)=f\left(0\right)=3=3

f\left(x_{1}\right)=f\left(\frac{\pi}{8}\right)=3 \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}=2.77163859753386

f\left(x_{2}\right)=f\left(\frac{\pi}{4}\right)=\frac{3 \sqrt{2}}{2}=2.12132034355964

f\left(x_{3}\right)=f\left(\frac{3 \pi}{8}\right)=3 \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}=1.14805029709527

f\left(x_{4}\right)=f\left(\frac{\pi}{2}\right)=0=0

f\left(x_{5}\right)=f\left(\frac{5 \pi}{8}\right)=- 3 \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}=-1.14805029709527

Step 4: Apply the Left Riemann Sum formula

\frac{\pi}{8}(3+2.77163859753386+2.12132034355964+1.14805029709527+0-1.14805029709527)=3.09955772805315

\int_{0}^{\frac{3 \pi}{4}}3 \cos{\left(x \right)}\ dx\approx 3.099558

5 0
3 years ago
Find an equation for those points P such that the distance from P to A(0, 1, 2) is equal to the distance from P to B(6, 4, 2). W
suter [353]

Answer:  The required equation for points P is 4x+2y=17.

Step-by-step explanation: We are give two points A(0, 1, 2) and B(6, 4, 2).

To find the equation for points P such that the distance of P from both A and B are equal.

We know that the distance between two points R(a, b, c) and S(d, e, f) is given by

RS=\sqrt{(d-a)^2+(e-b)^2+(f-c)^2}.

Let the point P be represented by (x, y, z).

According to the given information, we have

PA=PB\\\\\Rightarrow \sqrt{(x-0)^2+(y-1)^2+(z-2)^2}=\sqrt{(x-6)^2+(y-4)^2+(z-2)^2}\\\\\Rightarrow x^2+y^2-2y+1+z^2-4z+4=x^2-12x+36+y^2-8y+16+z^2-4z+4~~~~~~~[\textup{Squaring both sides}]\\\\\Rightarrow -2y+1=-12x-8y+52\\\\\Rightarrow 12x+6y=51\\\\\Rightarrow 4x+2y=17.

Thus, the required equation for points P is 4x+2y=17.

8 0
3 years ago
Other questions:
  • <img src="https://tex.z-dn.net/?f=simplify%20%5C%3A%20%28%20%5Cfrac%7B81%7D%7B16%7D%20%29%20%7B%20%7D%5E%7B%20%5Cfrac%7B%20-%203
    5·1 answer
  • The length of a rectangle is 9 units more than its width. Use x to represent the width. Then write an algebraic expression that
    13·1 answer
  • What is 1 1/25 as a decimal?
    10·2 answers
  • What comes next in this pattern? 7/2, 6/3, 5/4, ... 4/9 4/7 4/5
    9·1 answer
  • Stuck on this please help
    11·1 answer
  • -8 X-3x = -6 + 5 x<br> How to solve
    8·1 answer
  • Math help meeeeeeeeee
    9·1 answer
  • Plz help<br> Will be marked BRAINLIEST!!!!!!
    11·2 answers
  • 20-3+12+6x2<br>I need it for a math quiz.​
    11·2 answers
  • Calculate the slope given two points (2,-4) and (0, -8)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!