Step-by-step explanation:
<h2>
<em><u>=</u></em><em><u>></u></em><em><u>first </u></em><em><u>co</u></em><em><u>m</u></em><em><u>bine </u></em><em><u>the </u></em><em><u>like </u></em><em><u>terms</u></em></h2>
<em><u>5</u></em><em><u>x</u></em><em><u>-</u></em><em><u>8</u></em><em><u>x</u></em><em><u>+</u></em><em><u>1</u></em><em><u>2</u></em><em><u>=</u></em><em><u>2</u></em><em><u>4</u></em>
<em><u>-</u></em><em><u>3</u></em><em><u>x</u></em><em><u>+</u></em><em><u>1</u></em><em><u>2</u></em><em><u>=</u></em><em><u>2</u></em><em><u>4</u></em>
<h2>
<em><u>=</u></em><em><u>></u></em><em><u>substruct</u></em><em><u> </u></em><em><u>1</u></em><em><u>2</u></em><em><u> </u></em><em><u>from </u></em><em><u>1</u></em><em><u>2</u></em><em><u> </u></em><em><u>and </u></em><em><u>2</u></em><em><u>4</u></em></h2>
<em><u>-3x</u></em><em><u>+</u></em><em><u>1</u></em><em><u>2</u></em><em><u>-</u></em><em><u>1</u></em><em><u>2</u></em><em><u>=</u></em><em><u>2</u></em><em><u>4</u></em><em><u>-</u></em><em><u>1</u></em><em><u>2</u></em>
<em><u>-3x=</u></em><em><u>1</u></em><em><u>2</u></em>
<h2>
<em><u>=</u></em><em><u>></u></em><em><u>divide </u></em><em><u>-</u></em><em><u>3</u></em><em><u> </u></em><em><u>from </u></em><em><u>both </u></em><em><u>side</u></em></h2>
<em><u>-3x/</u></em><em><u>3</u></em><em><u>=</u></em><em><u>1</u></em><em><u>2</u></em><em><u>/</u></em><em><u>-</u></em><em><u>3</u></em>
<h2>
<em><u>=</u></em><em><u>-</u></em><em><u>4</u></em></h2>
Answer:

Step-by-step explanation:
We want to find the equation of a quadratic function in factored form with zeros at <em>x</em> = -4 and <em>x</em> = 0 that passes through the point (-3, 6).
The factored form of a quadratic is given by:

Where <em>p</em> and <em>q</em> are the zeros and <em>a</em> is the leading coefficient.
Since we have zeros at <em>x</em> = -4 and <em>x</em> = 0, let <em>p</em> = -4 and <em>q</em> = 0. Substitute:

Simplify:

And since we know that the function passes through the point (-3, 6), f(x) = 6 when <em>x</em> = -3. Thus:

Simplify:

Thus:

So, our quadratic function is:

Answer:
Lift
Step-by-step explanation:
Finding patterned and relationship between large sets of data can be obtained using the association rule as it finds insights, relationships and trends within sets of data variables. Lift is a parmater of interest whichbus used when performing analysis on association between variables in datasets. The Lift is literally the ratio of confidence to expected confidence. Where, the confidence of association is divided by the expected confidence (benchmark confidence).
Answer:
The answer to your question is 13 units
Step-by-step explanation:
Data
A (1, 9)
B (-4, -3)
distance = ?
Formula
distance = 
Substitution
distance = 
Simplification
distance = 
distance = 
distance = 
Result
distance = 13
You will flip the signs when you have to multiply or divide your equation by a negative integer.