A)
Let X be the food expenditure of a family.
Let the population mean of an expenditure of a family be.
Let the population standard deviation of an expenditure of a family be.
The proportion families spend more than $30 but less than $490 per month on food is,
Answer:
21
Step-by-step explanation:
yeah 2+2 is 21 thanks for the very nonexistent question
Answer:
115.48![m^{2}](https://tex.z-dn.net/?f=m%5E%7B2%7D)
Step-by-step explanation:
This shape can be split into two distinct shapes
Two halves of a semi circle, and a rectangle in between
Circle:
Putting both halves of the semi circle together will give you a full circle. The diameter of the circle is given (7m).
The area of a circle is A = π ![r^{2}](https://tex.z-dn.net/?f=r%5E%7B2%7D)
The radius, r, is half of the diameter, so 7 / 2 = 3.5m
A = π ![r^{2}](https://tex.z-dn.net/?f=r%5E%7B2%7D)
A = π * ![3.5^{2}](https://tex.z-dn.net/?f=3.5%5E%7B2%7D)
A = 38.38![m^{2}](https://tex.z-dn.net/?f=m%5E%7B2%7D)
Rectangle:
The area of a rectangle is A = h b
The height, h, is known at 7m
The base, b, can be found by removing the length from the dot to the end of the semi circles. This length is the radius of the semi circles, 3.5m
Removing the radius from the total length given
18 - 3.5 - 3.5 = 11m
The base is 11m
A = h b
A = 7 * 11 = 77![m^{2}](https://tex.z-dn.net/?f=m%5E%7B2%7D)
Total Area = Circle area + Rectangle area
Total Area = 38.38 + 77 = 115.48![m^{2}](https://tex.z-dn.net/?f=m%5E%7B2%7D)
1) No. 28/21 does not end up being equal to 2.
2) No. 45/5 does not equal 18/2
3) No. For something to be proportional, it should at least have the smaller number in the same place.
4) No. 25/12 does not equal 53/40
5) Yes. 4/2 is equal to 14/7
6) Yes. 4/1 is equla to 12/3
7) No. For something to be proportional, it should at least have the smaller number in the same place.
8) No. 44/9 is not equal to 36/11
9) Yes. 10/5 is equal to 16/8
10) Yes. 24/12 is equal to 14/7
11) No. 24/4 is not equal to 42/9
12) Yes. Both equal 1.
13) Yes. 20/5 is equal to 44/11
14) No. 44/40 is not equal to 34/30
15) Yes . 40/4 is equal to 10/1
16) Yes. 36/4 is equal to 45/5
17) No. 16/2 is not equal to 13/1
18) No. 38/9 is not equal to 28/7
19) Yes. This is a common proportion.
20) Yes. 50/25 is equal to 2.
21) Yes. 36/24 is equal to 3/2.
22) Yes. 18/12 is equal to 42/28
23) No. 33/42 is not equal to 27/37
24) No. 34/7 is not 4
25) Yes. The second proportion listed is half of the first
26) Yes. This is proportional.
27) Yes. This is proportional.
28) Yes. This is proportional.
29) No. This is not proportional.
30) No. This is not proportional
31) Yes. This is proportional.
32) Yes. This is proportional
33)
34)
35)
36)
37)
38)
39)
40)
I hope this helped. I left the last few unsolved so you could follow the patterns to find them out!
![\rightarrow z^4=-625\\\\\rightarrow z=(-625+0i)^{\frac{1}{4}}\\\\\rightarrow x+iy=(-625+0i)^{\frac{1}{4}}\\\\ x=r \cos A\\\\y=r \sin A\\\\r \cos A=-625\\\\ r \sin A=0\\\\x^2+y^2=625^{2}\\\\r^2=625^{2}\\\\|r|=625\\\\ \tan A=\frac{0}{-625}\\\\ \tan A=0\\\\ A=\pi\\\\\rightarrow z= [625(\cos (2k \pi+pi) +i \sin (2k\pi+ \pi)]^{\frac{1}{4}}\\\\k=0,1,2,3,4,....\\\\\rightarrow z=(625)^{\frac{1}{4}}[\cos \frac{(2k \pi+pi)}{4} +i \sin \frac{(2k\pi+ \pi)}{4}]](https://tex.z-dn.net/?f=%5Crightarrow%20z%5E4%3D-625%5C%5C%5C%5C%5Crightarrow%20z%3D%28-625%2B0i%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5C%5C%5C%5C%5Crightarrow%20x%2Biy%3D%28-625%2B0i%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5C%5C%5C%5C%20x%3Dr%20%5Ccos%20A%5C%5C%5C%5Cy%3Dr%20%5Csin%20A%5C%5C%5C%5Cr%20%5Ccos%20A%3D-625%5C%5C%5C%5C%20r%20%5Csin%20A%3D0%5C%5C%5C%5Cx%5E2%2By%5E2%3D625%5E%7B2%7D%5C%5C%5C%5Cr%5E2%3D625%5E%7B2%7D%5C%5C%5C%5C%7Cr%7C%3D625%5C%5C%5C%5C%20%5Ctan%20A%3D%5Cfrac%7B0%7D%7B-625%7D%5C%5C%5C%5C%20%5Ctan%20A%3D0%5C%5C%5C%5C%20A%3D%5Cpi%5C%5C%5C%5C%5Crightarrow%20z%3D%20%5B625%28%5Ccos%20%282k%20%5Cpi%2Bpi%29%20%2Bi%20%5Csin%20%282k%5Cpi%2B%20%5Cpi%29%5D%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5C%5C%5C%5Ck%3D0%2C1%2C2%2C3%2C4%2C....%5C%5C%5C%5C%5Crightarrow%20z%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7B%282k%20%5Cpi%2Bpi%29%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B%282k%5Cpi%2B%20%5Cpi%29%7D%7B4%7D%5D%20)
![\rightarrow z_{0}=(625)^{\frac{1}{4}}[\cos \frac{pi}{4} +i \sin \frac{\pi)}{4}]\\\\\rightarrow z_{1}=(625)^{\frac{1}{4}}[\cos \frac{3\pi}{4} +i \sin \frac{3\pi}{4}]\\\\ \rightarrow z_{2}=(625)^{\frac{1}{4}}[\cos \frac{5\pi}{4} +i \sin \frac{5\pi}{4}]\\\\ \rightarrow z_{3}=(625)^{\frac{1}{4}}[\cos \frac{7\pi}{4} +i \sin \frac{7\pi}{4}]](https://tex.z-dn.net/?f=%5Crightarrow%20z_%7B0%7D%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7Bpi%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B%5Cpi%29%7D%7B4%7D%5D%5C%5C%5C%5C%5Crightarrow%20z_%7B1%7D%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7B3%5Cpi%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B3%5Cpi%7D%7B4%7D%5D%5C%5C%5C%5C%20%5Crightarrow%20z_%7B2%7D%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7B5%5Cpi%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B5%5Cpi%7D%7B4%7D%5D%5C%5C%5C%5C%20%5Crightarrow%20z_%7B3%7D%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7B7%5Cpi%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B7%5Cpi%7D%7B4%7D%5D)
Argument of Complex number
Z=x+iy , is given by
If, x>0, y>0, Angle lies in first Quadrant.
If, x<0, y>0, Angle lies in Second Quadrant.
If, x<0, y<0, Angle lies in third Quadrant.
If, x>0, y<0, Angle lies in fourth Quadrant.
We have to find those roots among four roots whose argument is between 270° and 360°.So, that root is
![\rightarrow z_{2}=(625)^{\frac{1}{4}}[\cos \frac{5\pi}{4} +i \sin \frac{5\pi}{4}]](https://tex.z-dn.net/?f=%20%5Crightarrow%20z_%7B2%7D%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7B5%5Cpi%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B5%5Cpi%7D%7B4%7D%5D)