<h2>Right answer: Doldrums</h2>
These are also called zones of equatorial calm and it is due a climatic phenomenon that is placed near the Earth equator, attributed to the soft winds, that are called calm winds as well; accompanied by systems of abundant rains and heat.
In this area periods of great calm occur when the winds virtually disappear completely, trapping the sailing ships for long periods (days or weeks). This is why the term <em>doldrum</em> became popular as a colloquial expression in the eighteenth century, to refer to "<em>the caprice of the wind that slows down the navigation to sail".
</em>
The zone is located in the place where two trade winds meet, this means the trade winds of the northern hemisphere <u>converge</u> with those of the southern hemisphere, that is why this region is related to the <u>intertropical convergence zone</u>.
Answer:
It is longer
Explanation:
According to the theory of special relativity, moving clocks run slower. So, the construction worker moving at a constant speed observers a time much longer than the time I observe since I am stationary. If t is the time observed by me and v is the speed of the construction worker, then, the time observed by the construction worker, t' is given by
t' = t/√[1 - (v/c)²] where c = speed of light
So, the construction worker reports a longer time interval than me since his time runs slower.
A few different ways to do this:
Way #1:
The current in the series loop is (12 V) / (total resistance) .
(Turns out to be 2 Amperes, but the question isn't asking for that.)
In a series loop, the current is the same at every point, so it's
the same current through each resistor.
The power dissipated by a resistor is (current)² · (resistance),
and the current is the same everywhere in the circuit, so the
smallest resistance will dissipate the least power. That's R1 .
And by the way, it's not "drawing" the most power. It's dissipating it.
Way #2:
Another expression for the power dissipated by a resistance is
(voltage across the resistance)² / (resistance) .
In a series loop, the voltage across each resistor is
[ (individual resistance) / (total resistance ] x battery voltage.
So the power dissipated by each resistor is
(individual resistance)² x [(battery voltage) / (total resistance)²]
This expression is smallest for the smallest individual resistance.
(The other two quantities are the same for each individual resistor.)
So again, the least power is dissipated by the smallest individual resistance.
That's R1 .
Way #3: (Einstein's way)
If we sat back and relaxed for a minute, stared at the ceiling, let our minds
wander, puffed gently on our pipe, and just daydreamed about this question
for a minute or two, we might have easily guessed at the answer.
===> When you wire up a battery and a light bulb in series, the part
that dissipates power, and gets so hot that it radiates heat and light, is
the light bulb (some resistance), not the wire (very small resistance).
Answer:
2.57 seconds
Explanation:
The motion of the ball on the two axis is;
x(t) = Vo Cos θt
y(t) = h + Vo sin θt - 1/2gt²
Where; h is the initial height from which the ball was thrown.
Vo is the initial speed of the ball, 22 m/s , θ is the angle, 35° and g is the gravitational acceleration, 9.81 m/s²
We want to find the time t at which y(t) = h
Therefore;
y(t) = h + Vo sin θt - 1/2gt²
Whose solutions are, t = 0, at the beginning of the motion, and
t = 2 Vo sinθ/g
= (2 × 22 × sin 35°)/9.81
= 2.57 seconds
Answer:
There are three species of land iguana found in the Galapagos Islands. The well-known yellowish land iguanas include Conolophus subcristatus, native to six islands, and Conolophus pallidus, found only on the island of Santa Fe.