Answer:
agree with student 2, disagree with student 1
Explanation:
If you want to know if the wavelength of light was shifted you have to know the original wavelengths
Since we know the absorption spectrum for elements like hydrogen, we can look for these absorption lines in the star's spectra and figure out what direction these lines are shifted and tell if the star is moving away or towards us
The color of the star refers to the temperature of the star's surface which is not related to the doppler shift of the star
Formulated in the 1980s by Robert Sternberg<span>, the </span>triarchic theory<span> distinguishes three aspects of </span>intelligence<span>: analytic skills, such as the ability to think abstractly and evaluate </span>information<span>; creativity, the ability to invent novel solutions or ideas; and practical skills, which enable one to cope with concrete ...</span>
If you increase the mass m of the car, the force F will increase, while acceleration a is kept constant. Because F and m are directly proportional.
If you increase the acceleration a of the car, the force F will increase, while mass m is kept constant. Because F and a are directly proportional.
How can Newton's laws be verified experimentally; is by setting this experiment, and changing one variable while keeping the other constant, then observe the change in F.
Hope this helps.
I see the light moving exactly at speed equal to c.
In fact, the second postulate of special relativity states that:
"The speed of light in free space has the same value c<span> in all inertial frames of reference."
</span>
The problem says that I am moving at speed 2/3 c, so my motion is a uniform motion (constant speed). This means I am in an inertial frame of reference, so the speed of light in this frame must be equal to c.
Answer:
B. 0.1 meters/second/second in the same direction of travel.
Explanation:
Acceleration is the rate of change of velocity. Acceleration is a vector quantity.
a=Δv/Δt
=(v₂-v₁)/(t₂-t₁)
v₁=4 m/s
v₂=6 m/s
t₁=0 s
t₂=20 s
a=(6m/s-4m/s)/(20s-0)
= 0.1 m/s² in the same direction of travel.
Therefore acceleration =0.1 meters/second/second in the same direction of travel.