Answer:
460 million = 4.6 x 10^8
Step-by-step explanation:
Answer:Instinctively one thinks geometrically: horizontal (X) axis and then vertical (Y) axis. This is not, however, the case with a 2D array, rows come first and then columns. Consider the following analogy: in geometry one walks to the ladder (X axis) and climbs it (Y axis).
Step-by-step explanation:
Answer:
si
Step-by-step explanation:
Answer:
y = 1/12 (x − 5)²
Step-by-step explanation:
We can solve this graphically without doing calculations.
The y component of the focus is y = 3. Since this is above the directrix, we know this is an upward facing parabola, so it must have a positive coefficient. That narrows the possible answers to A and C.
The x component of the focus is x = 5. Since this is above the vertex, we know the x component of the vertex is also x = 5.
So the answer is A. y = 1/12 (x−5)².
But let's say this wasn't a multiple choice question and we needed to do calculations. The equation of a parabola is:
y = 1/(4p) (x − h)² + k
where (h, k) is the vertex and p is the distance from the vertex to the focus.
The vertex is halfway between the focus and the directrix. So p is half the difference of the y components:
p = (3 − (-3)) / 2
p = 3
k, the y component of the vertex, is the average:
k = (3 + (-3)) / 2
k = 0
And h, the x component of the vertex, is the same as the focus:
h = 5
So:
y = 1/(4×3) (x − 5)² + 0
y = 1/12 (x − 5)²
For this case we must indicate which of the equations shown can be solved using the quadratic formula.
By definition, the quadratic formula is applied to equations of the second degree, of the form:

Option A:

Rewriting we have:

This equation can be solved using the quadratic formula
Option B:

Rewriting we have:

It can not be solved with the quadratic formula.
Option C:

Rewriting we have:

This equation can be solved using the quadratic formula
Option D:

Rewriting we have:

It can not be solved with the quadratic formula.
Answer:
A and C