Answer: x = 40.5
Step-by-step explanation:
Simply divide 27/(2/3) to get 40.5
<em>Hope it helps <3</em>
Answer:
9 ft = 9 × 12 = 108 in
ratio is 1:108
Step-by-step explanation:
Answer:
4cm^2
Step-by-step explanation:
First we need to find the length of the height of the triangle using Pythagoras:
a^2+b^2=c^2 (Substitute in what we have)
a^2+3√2(^2)=2√5(^2) = a^2 + 18 = 20 -> 20-18=2 √2=BD
Now we can find the area:
AD+DC= 3√2 + √2 = 4√2 x √2 = 8/2 = 4
Answer:
Step-by-step explanation:
4x − y = −11
2x + 3y = 5
lets multiply the second equation by -2 and add it to the first:
4x − y = −11
-4x - 6y = -10
------------------
0 - 7y = -21
y = -21/-7
y = 3
now we substitute this result in the first equation to find x:
4x − y = −11
4x - 3 = -11
4x = -8
x = -8/4
x = 2
so the solution is y = 3 and x =2
4x − 9y = −21
−10y = −30
we solve for y
−10y = −30
y = -30/-10
y = 3
and substitute in the first equation:
4x − 9y = −21
4x − 9(3) = −21
4x - 27 = -21
4x = 6
x = 6/4 = 3/2
so the solution is x = 3/2 and y = 3
4x + 3y = 5
2y = −6
we solve for y:
2y = −6
y = -6/2
y = -3
we do substitute in the first equation:
4x + 3y = 5
4x + 3(-3) = 5
4x - 9 = 5
4x = 14
x = 14/4
x = 7/2
so the solution is x = 7/2 and y = -3
7x − 3y = −11
9x = −6
we solve for x:
9x = −6
x = -6/9
x = -2/3
then we substitute in the first equation the result found:
7x − 3y = −11
7(-2/3) − 3y = −11
-14/3 - 3y = -11
we multiply by 3 to eliminate fractions:
-14 - 9y = -33
9y = 19
y = 19/9
so the solution is x = -2/3 and y = 19/9
12x − 3y = −33
14x = −28
we solve for x:
14x = −28
x = -28/14
x = -2
then we substitute in the first equation:
12x − 3y = −33
12(-2) − 3y = −33
-24 - 3y = -33
3y = 9
y = 3
then the solution is x = -2 and y = 3
By geometric and algebraic properties the angles BTC, TBC and TBC from the triangle BTC are 128°, 26° and 26°, respectively.
<h3>How to determine the angles of a triangle inscribed in a circle</h3>
According to the figure, the triangle BTC is inscribed in the circle by two points (B, C). In this question we must make use of concepts of diameter and triangles to determine all missing angles.
Since AT and BT represent the radii of the circle, then the triangle ABT is an <em>isosceles</em> triangle. By geometry we know that the sum of <em>internal</em> angles of a triangle equals 180°. Hence, the measure of the angles A and B is 64°.
The angles ATB and BTC are <em>supplmentary</em> and therefore the measure of the latter is 128°. The triangle BTC is also an <em>isosceles</em> triangle and the measure of angles TBC and TCB is 26°.
By geometric and algebraic properties the angles BTC, TBC and TBC from the triangle BTC are 128°, 26° and 26°, respectively.
To learn more on triangles, we kindly invite to check this verified question: brainly.com/question/2773823