There are 3 ways of solving a simultaneous problem, substitution method, elimination method and Gauss-Jordan method. I'm gonna use the substitution method since it's easier and i think it would suit your level more.
First let's try solving for y since it's easier to start with.
Firstly we have to find an equation for x:

Great, now we can use the substitution method to find the value of y using the first equation:

Now we know that y=1 we can solve the first equation we made:

And the answer is 
Double check:

And that's our final answer! (4,1)
8/100- 8 over 100. It is over a hundred because there are 2 values after the decimal point.
The answer is A) y=6x - 11
Answer:
kinda late but the answer is B
Hope this helps!! <3
Answer:
1. y' = 3x² / 4y²
2. y'' = 3x/8y⁵[(4y³ – 3x³)]
Step-by-step explanation:
From the question given above, the following data were obtained:
3x³ – 4y³ = 4
y' =?
y'' =?
1. Determination of y'
To obtain y', we simply defferentiate the expression ones. This can be obtained as follow:
3x³ – 4y³ = 4
Differentiate
9x² – 12y²dy/dx = 0
Rearrange
12y²dy/dx = 9x²
Divide both side by 12y²
dy/dx = 9x² / 12y²
dy/dx = 3x² / 4y²
y' = 3x² / 4y²
2. Determination of y''
To obtain y'', we simply defferentiate above expression i.e y' = 3x² / 4y². This can be obtained as follow:
3x² / 4y²
Let:
u = 3x²
v = 4y²
Find u' and v'
u' = 6x
v' = 8ydy/dx
Applying quotient rule
y'' = [vu' – uv'] / v²
y'' = [4y²(6x) – 3x²(8ydy/dx)] / (4y²)²
y'' = [24xy² – 24x²ydy/dx] / 16y⁴
Recall:
dy/dx = 3x² / 4y²
y'' = [24xy² – 24x²y (3x² / 4y² )] / 16y⁴
y'' = [24xy² – 18x⁴/y] / 16y⁴
y'' = 1/16y⁴[24xy² – 18x⁴/y]
y'' = 1/16y⁴[(24xy³ – 18x⁴)/y]
y'' = 1/16y⁵[(24xy³ – 18x⁴)]
y'' = 6x/16y⁵[(4y³ – 3x³)]
y'' = 3x/8y⁵[(4y³ – 3x³)]