9514 1404 393
Answer:
Step-by-step explanation:
To find the initial amount, put 0 where t is in the formula and do the arithmetic.
A(0) = 523(1/2)^0 = 523(1) = 523
The initial amount is 523 grams.
__
To find the amount remaining after 100 years, put 100 where t is in the formula and do the arithmetic.
A(100) = 523(1/2)^(100/30) ≈ 523(0.0992123) ≈ 52
About 52 grams will remain after 100 years.
Answer:
C) a sample distribution of a sample mean with n = 10

and 
Step-by-step explanation:
Here, the random experiment is rolling 10, 6 faced (with faces numbered from 1 to 6) fair dice and recording the average of the numbers which comes up and the experiment is repeated 20 times.So, here sample size, n = 20 .
Let,
= The number which comes up on the ith die on the jth trial.
∀ i = 1(1)10 and j = 1(1)20
Then,
= 
= 3.5 ∀ i = 1(1)10 and j = 1(1)20
and,
= 
= 
= 
15.166667
so,
= 

= 2.91667
and
= ![\sqrt {2.91667}[/tex [tex]\simeq 1.7078261036](https://tex.z-dn.net/?f=%5Csqrt%20%7B2.91667%7D%5B%2Ftex%3C%2Fp%3E%3Cp%3E%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Btex%5D%5Csimeq%201.7078261036)
Now we get that,

We get that
are iid RV's ∀ j = 1(1)20
Let, 
So, we get that 
=
for any i = 1(1)10
= 3.5
and,
![\sigma_{({\overline}{Y})} = \frac {\sigma_{Y_{j}}}{\sqrt {20}} = \frac {\sigma_{X_{ij}}}{\sqrt {20}} = \frac {1.7078261036}{\sqrt {20}} [tex]\simeq 0.38](https://tex.z-dn.net/?f=%5Csigma_%7B%28%7B%5Coverline%7D%7BY%7D%29%7D%20%3D%20%5Cfrac%20%7B%5Csigma_%7BY_%7Bj%7D%7D%7D%7B%5Csqrt%20%7B20%7D%7D%3C%2Fp%3E%3Cp%3E%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3D%20%5Cfrac%20%7B%5Csigma_%7BX_%7Bij%7D%7D%7D%7B%5Csqrt%20%7B20%7D%7D%3C%2Fp%3E%3Cp%3E%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3D%20%5Cfrac%20%7B1.7078261036%7D%7B%5Csqrt%20%7B20%7D%7D%3C%2Fp%3E%3Cp%3E%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Btex%5D%5Csimeq%200.38)
Hence, the option which best describes the distribution being simulated is given by,
C) a sample distribution of a sample mean with n = 10

and 
we will check each options
option-A:
For solving any equations , we always isolate variables on anyone side
For exp: x+7=1
so, this is TRUE
option-B:
For solving system of equations
For exp:
x-y=1
x+y=3
If we use addition , we could easily solve for x and y
so, this is TRUE
option-C:
We always solve problems using conventional method
we do not guess
so, this is FALSE
option-D:
We often reverse order of operation
For exp:
(x-2)^2-3=0
so, this is TRUE
option-E:
For linear equations , we always get one solution , infinite solutions or no solutions
so, this is FALSE
Answer:
B
Step-by-step explanation:
Drop an altitude. Either of the two resulting right triangles with legs of length 5 and x and a hypotenuse of 10.
By the Pythagorean theorem, it follows that the answer is B.