Answer:
9
Step-by-step explanation:
Just substitute the value of x onto the x variables in the equation
; 4(1)^2 + 5(1)
; 4 + 5
; 9
<span>30 hours
For this problem, going to assume that the actual flow rate for both pipes is constant for the entire duration of either filling or emptying the pool. The pipe to fill the pool I'll consider to have a value of 1/12 while the drain that empties the pool will have a value of 1/20. With those values, the equation that expresses how many hour it will take to fill the pool while the drain is open becomes:
X(1/12 - 1/20) = 1
Now solve for X
X(5/60 - 3/60) = 1
X(2/60) = 1
X(1/30) = 1
X/30 = 1
X = 30
To check the answer, let's see how much water would have been added over 30 hours.
30/12 = 2.5
So 2 and a half pools worth of water would have been added. Now how much would be removed?
30/20 = 1.5
And 1 and half pools worth would have been removed. So the amount left in the pool is
2.5 - 1.5 = 1
And that's exactly the amount needed.</span>
Answer:
Let us assume that the pay rate per hour = x
no. of hours worked = n
Gross earnings = x*n
Federal taxes = 18% of gross earnings
= 0.18(x*n)
State taxes = 4% of gross earnings
= 0.04(x*n)
Social security deduction = 7.05% of gross earnings
= 0.0705(x*n)
Total deductions = Federal taxes + State taxes +SSD
= 0.18(x*n) + 0.04(x*n) + 0.0705(x*n)
= 0.2905(x*n)
Net pay = Gross earnings - Total Deduction
Net pay = x*n - 0.2905(x*n)
Net pay = 0.7095(x*n)
Answer:
1. adjacent: ∠ACB and ∠BCD.
vertical: ∠ACB and ∠ECD
Step-by-step explanation:
Answer:
Step-by-step explanation:
s(1-30/100)=420
s(100-30)/100=420
s(70/100)=420
s(7/10)=420
7s=4200
s=600