There is an infinite number of chords in a circle
Answer:
EQUILATERAL TRIANGLE = 3/27

<h2>SO THE ANS IS 9 .</h2>
I HOPE IT IS HELPFUL
Standard Form has many faces including polynomial, decimal, equation and etc. According to your question transforming that in polynomial for Two hundred million would be 200,000,000 or 2 x 10^8 in scientific notation
Answer:
i did the first
Step-by-step explanation:
1st way
Standard form: a(X-h)²+k = ( -2/3X² -16/3X -32/3) +32/3 -17/3 = -2/3(X +4)² +5
y = -2/3*X^2-16/3*X-17/3
X = -4 ±√( 15/2) = -6.7386, or -1.2614
Axis of symmetry: X= -4; Vertex (maximum)=(h,k)=( -4, 5); y-intercept is (0,-5.66666666667)
two real roots: X=-1.2613872124776866 and -6.738612787477313
Answer:
a) P(x=3)=0.089
b) P(x≥3)=0.938
c) 1.5 arrivals
Step-by-step explanation:
Let t be the time (in hours), then random variable X is the number of people arriving for treatment at an emergency room.
The variable X is modeled by a Poisson process with a rate parameter of λ=6.
The probability of exactly k arrivals in a particular hour can be written as:

a) The probability that exactly 3 arrivals occur during a particular hour is:

b) The probability that <em>at least</em> 3 people arrive during a particular hour is:
![P(x\geq3)=1-[P(x=0)+P(x=1)+P(x=2)]\\\\\\P(0)=6^{0} \cdot e^{-6}/0!=1*0.0025/1=0.002\\\\P(1)=6^{1} \cdot e^{-6}/1!=6*0.0025/1=0.015\\\\P(2)=6^{2} \cdot e^{-6}/2!=36*0.0025/2=0.045\\\\\\P(x\geq3)=1-[0.002+0.015+0.045]=1-0.062=0.938](https://tex.z-dn.net/?f=P%28x%5Cgeq3%29%3D1-%5BP%28x%3D0%29%2BP%28x%3D1%29%2BP%28x%3D2%29%5D%5C%5C%5C%5C%5C%5CP%280%29%3D6%5E%7B0%7D%20%5Ccdot%20e%5E%7B-6%7D%2F0%21%3D1%2A0.0025%2F1%3D0.002%5C%5C%5C%5CP%281%29%3D6%5E%7B1%7D%20%5Ccdot%20e%5E%7B-6%7D%2F1%21%3D6%2A0.0025%2F1%3D0.015%5C%5C%5C%5CP%282%29%3D6%5E%7B2%7D%20%5Ccdot%20e%5E%7B-6%7D%2F2%21%3D36%2A0.0025%2F2%3D0.045%5C%5C%5C%5C%5C%5CP%28x%5Cgeq3%29%3D1-%5B0.002%2B0.015%2B0.045%5D%3D1-0.062%3D0.938)
c) In this case, t=0.25, so we recalculate the parameter as:

The expected value for a Poisson distribution is equal to its parameter λ, so in this case we expect 1.5 arrivals in a period of 15 minutes.
