Answer: There are 1,816,214,400 ways for arrangements.
Step-by-step explanation:
Since we have given that
"REPRESENTATION"
Here, number of letters = 14
There are 2 R's, 3 E's, 2 T's, 2 N's
So, number of permutations would be

Hence, there are 1,816,214,400 ways for arrangements.
Answer:140
Step-by-step explanation:
24/20=168/N
Cross product
24×n=168×20
24n=3360
n=3360/24
n=140
2(4x+5)>7x+20 perform indicated multiplication on left side
8x+10>7x+20 subtract 7x from both sides
x+10>20 subtract 10 from both sides
x>10
or in interval notation, x=(10, +oo)
Answer:2
Step-by-step explanation: two 1 equal one 2
An= mth term.
an=a₁+(n-1)*d
a₁₂=41
a₁₅=140
a₁₂=41
41=a₁+(12-1)*d
41=a₁+11d
a₁+11d=41 (1)
a₁₅=140
140=a₁+(15-1)*d
140=a₁+14d
a₁+14d=140 (2)
With the equiations (1) and (2) build a system of equations
a₁+11d=41
a₁+14d=140
we solve it.
-(a₁+11d=41)
a₁+14d=140
--------------------
3d=99 ⇒d=99/3=33
a₁+11d=41
a₁+(11*33)=41
a₁+363=41
a₁=41-363=-322
an=a₁+(n-1)*d
an=-322+(n-1)*33
an=-322+33n-33
an=-355+33n
an=-355+33n
To check:
a₁₂=-355+33*12=-355+396=41
a₁₅=-355+33*15=-355+495=140.