The inverse of function f(x) = 9x+7 is f-1(x) = x/9 - 7/9
<h3>How to determine the inverse of the function?</h3>
The function is given as:
f(x) = 9x + 7
Express f(x) as y
y = 9x + 7
Swap the positions of x and y in the above equation
x = 9y + 7
Subtract 7 from both sides
9y = x - 7
Divide through by 9
y = x/9 - 7/9
Express as an inverse function
f-1(x) = x/9 - 7/9
Hence, the inverse of function f(x) = 9x+7 is f-1(x) = x/9 - 7/9
Read more about inverse functions at:
brainly.com/question/14391067
#SPJ1
Problem 1
x = measure of angle N
2x = measure of angle M, twice as large as N
3(2x) = 6x = measure of angle O, three times as large as M
The three angles add to 180 which is true of any triangle.
M+N+O = 180
x+2x+6x = 180
9x = 180
x = 180/9
x = 20 is the measure of angle N
Use this x value to find that 2x = 2*20 = 40 and 6x = 6*20 = 120 to represent the measures of angles M and O in that order.
<h3>Answers:</h3>
- Angle M = 40 degrees
- Angle N = 20 degrees
- Angle O = 120 degrees
====================================================
Problem 2
n = number of sides
S = sum of the interior angles of a polygon with n sides
S = 180(n-2)
2700 = 180(n-2)
n-2 = 2700/180
n-2 = 15
n = 15+2
n = 17
<h3>Answer: 17 sides</h3>
====================================================
Problem 3
x = smaller acute angle
3x = larger acute angle, three times as large
For any right triangle, the two acute angles always add to 90.
x+3x = 90
4x = 90
x = 90/4
x = 22.5
This leads to 3x = 3*22.5 = 67.5
<h3>Answers:</h3>
- Smaller acute angle = 22.5 degrees
- Larger acute angle = 67.5 degrees
Okay first make sure you change negative 8 to a positive 8.
Set the problem up 8 -11 -49 899 -2506
__________________
8 -11 -49 899 -2506
-88 -1096 -1576
____________________
-11 -137 -197 -4082
Your answer will be
-11x^3 - 137x^2 - 197x - 4082
Answer:
If Lance got home from school at 3:32 p.m. A and B both represent:
A: seventeen minutes before 3 would be before 3 o'clock even happens
B: 28 minutes before 4 would make more sense, since 3:32 is before 4 o'clock
Lance got home 28 minutes before 4
Hope this helps ;)