<span>Winning Probablity = 0.2, hence Losing Probability = 0.8
Probablity of winning atmost one time, that means win one and lose four times or lose all the times. So p(W1 or W0) = p (W1) + p(W0)
Winning once W1 is equal to L4, winning zero times is losing 5 times.
p(W1) = p(W1&L4) and this happens 5 times; p(W0) = p(L5);
p (W1) + p(W0) = p(L4) + p(L5)
p(L4) + p(L5) = (5 x 0.2 x 0.8^4) + (0.8^5) => 0.8^4 + 0.8^5
p(W1 or W0) = 0.4096 + 0.32768 = 0.7373</span>
Answer:
Do you have the math exercices? I am sorry but I can just help in the subjects concerning math. It is been some time since I studied biology and other high-school subjects.
Answer:
Essentially by the definition of
π
Step-by-step explanation:
idk m8 i just googled it. seems legit ill send the link if youd like
Answer:If you would like to know what will the approximate population be after 3 years, you can calculate this using the following steps:
an initial population ... 298 quail
an annual rate ... 8%
an exponential function to model the quail population:
f = 298(1+8%)^t = 298(1+8/100)^t
f ... quail population
t ... time (years)
t = 3 years
f = 298(1+8/100)^t = 298(1.08)^3 = 375.4 quail
375.4 quail after 3 years.