<span>n/100 * 64 = 8 </span><span>n/100 = 8/64<span>
n = 8*100/64 = 25/2 = 12.5</span><span>
8 is 12.5% of 64 hope this helps:)</span></span>
Answer:
graph?
Step-by-step explanation:
First you multiply 6 and 18 to find the total servings: 6*18= 108. Then you divide 108 by 9 to see how many servings each person gets: 108/9= 12. Therefore, each person get 12 ounces of soup.
Answer:
2/3
Step-by-step explanation:
given :
fraction of students that take English = 4/5 of all students
fraction of students that take composition
= 5/6 of the students that take English
= 5/6 of (4/5 of all students)
= 5/6 x 4/5
= (5 x 4) / (6 x 5)
= 20/30
= 2/3
Answer:
The 80% confidence interval for the population mean is between 28.32 characters and 31.68 characters.
Step-by-step explanation:
We have the standard deviation for the population, so we can use the normal distribution. If we had the standard deviation for the sample, we would have to use the t-distribution.
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so 
Now, find the margin of error M as such

In which
is the standard deviation of the population and n is the size of the sample.

The lower end of the interval is the sample mean subtracted by M. So it is 30 - 1.68 = 28.32 characters.
The upper end of the interval is the sample mean added to M. So it is 30 + 1.68 = 31.68 characters.
The 80% confidence interval for the population mean is between 28.32 characters and 31.68 characters.