Answer:
The concentration of the copper (II) sulfate solution is 2.06 * 10^2 μmol/L or 2.06 * 10^2 μM
Explanation:
The concentration of a solution is the amount of solute dissolved in a given volume of solution. In this case, the concentration of the copper(II) sulfate solution in micromoles per liter (symbol ) is the number of micromoles of copper(II) sulfate dissolved in each liter of solution. To calculate the micromoles of copper(II) sulfate dissolved in each liter of solution you must divide the total micromoles of solute by the number of liters of solution.
Here's that idea written as a formula: c= n/V
where c stands for concentration, n stands for the total micromoles of copper (II) sulfate and V stands for the total volume of the solution.
You're not given the volume of the solution in liters, but rather in milliliters. You can convert milliliters to liters with a unit ratio: V= 150. mL * 10^-3 L/ 1 mL = 0.150 L
Next, plug in μmol and liters into the formula to divide the total micromoles of solute by the number of liters of solution: c= 31 μmol/0.150 L = 206.66 μmol/L
Convert this number into scientific notation: 2.06 * 10^2 μmol/L or 2.06 * 10^2 μM
The quality or state of being volcanic.
<span>9.40x10^19 molecules.
The balanced equation for ammonia is:
N2 + 3H2 ==> 2NH3
So for every 3 moles of hydrogen gas, 2 moles of ammonia is produced. So let's calculate the molar mass of hydrogen and ammonia, starting with the respective atomic weights:
Atomic weight nitrogen = 14.0067
Atomic weight hydrogen = 1.00794
Molar mass H2 = 2 * 1.00794 = 2.01588 g/mol
Molar mass NH3 = 14.0067 + 3 * 1.00794 = 17.03052 g/mol
Moles H2 = 4.72 x 10^-4 g / 2.01588 g/mol = 2.34140921086573x10^-4 mol
Moles NH3 = 2.34140921086573x10^-4 mol * (2/3) = 1.56094x10^-4 mol
Now to convert from moles to molecules, just multiply by Avogadro's number:
1.56094x10^-4 * 6.0221409x10^23 = 9.400197448261x10^19
Rounding to 3 significant figures gives 9.40x10^19 molecules.</span>
Answer :
A car stopped at the top of a hill
Explanation :
Definition of potential energy : energy stored that depends upon the relative position of various parts of a system