The number is 25. The square root of 25 is 5 and 5x2 is 10 and then 10+5 is 15
Mass of CO₂ evolved : 0.108 g
<h3>Further explanation</h3>
Given
1.205g sample, 36% MgCO3 and 44% K2CO3
Required
mass of CO2
Solution
0.36 x 1.205 g=0.4338 g
mass C in MgCO₃(MW MgCO₃=84 g/mol, Ar C = 12/gmol)
= (12/84) x 0.4338
= 0.062 g
0.44 x 1.205 g = 0.5302 g
Mass C in K₂CO₃(MW=138 g/mol) :
= (12/138) x 0.5302
= 0.046 g
Total mass Of CO₂ :
= 0.062 + 0.046
= 0.108 g
K₃PO₄ → 3K⁺ (aq) + PO₄³⁻(aq)
One mole of PO₄³⁻ ion gets dissociated from one mole of K₃PO₄
As per the definition of Avogadro's number, 1 mole = 6.022 x 10²³ ions
One mole of PO₄³⁻ ions x (6.022 x 10²³ ions/ 1 mole of PO₄³⁻ ions )
= 6.022 x 10²³ ions
Therefore , there are 6.022 x 10²³ PO₄³⁻ ions in a mole of K₃PO₄.
Answer:
81 °C
Explanation:
This is a calorimetry question so a few things you will need for this. The calorimetry equation q=mcΔT & the specific heat of water (4.2J/g•°C). Other definitions are:
q = heat added/released by a sample
m = mass of sample
c=specific heat of sample
ΔT = change in temperature
from here we can rearrange the equation to state:
q/(mc) = ΔT
1200J/((20.0g)(4.2J/g•°C)) = ΔT
14°C = ΔT
If the starting temperature was 95.0°C and we know that the temperature was cooled by 14°C then the final temperature of the water would be 81.
Since obliquity is the angle between the axis of rotation and the direction perpendicular to the orbital plane, it changes as the orbital plane changes due to the influence of other planets. But the axis of rotation can also move (axial precession), due to torque exerted by the sun on a planet's equatorial bulge.
(Got it from google )