Answer:
The energy required to ionize the ground-state hydrogen atom is 2.18 x 10^-18 J or 13.6 eV.
Explanation:
To find the energy required to ionize ground-state hydrogen atom first we calculate the wavelength of photon required for this operation.
It is given by Bohr's Theory as:
1/λ = Rh (1/n1² - 1/n2²)
where,
λ = wavelength of photon
n1 = initial state = 1 (ground-state of hydrogen)
n2 = final state = ∞ (since, electron goes far away from atom after ionization)
Rh = Rhydberg's Constant = 1.097 x 10^7 /m
Therefore,
1/λ = (1.097 x 10^7 /m)(1/1² - 1/∞²)
λ = 9.115 x 10^-8 m = 91.15 nm
Now, for energy (E) we know that:
E = hc/λ
where,
h = Plank's Constant = 6.625 x 10^-34 J.s
c = speed of light = 3 x 10^8 m/s
Therefore,
E = (6.625 x 10^-34 J.s)(3 x 10^8 m/s)/(9.115 x 10^-8 m)
<u>E = 2.18 x 10^-18 J</u>
E = (2.18 x 10^-18 J)(1 eV/1.6 x 10^-19 J)
<u>E = 13.6 eV</u>
The reactions are in order which includes combustion reaction, Hydration reaction, oxidation reaction, and displacement reaction.
a) A combustion reaction is a chemical reaction between a fuel and an oxidant where heat is released. The combustion reaction example is given below. It is a balanced chemical reaction.
2C₃H₆(g) + 9O₂(g) --------> 6CO₂(g) + 6H₂O(g)
b. A hydration reaction is a chemical reaction in which a molecule of water is added to another molecule. Here Aluminum oxide is added to water to form aluminum hydroxide.
4Al₂O3(s) + 6H₂O(l)------> 2Al(OH)3(s)
c. When a metal reacts with oxygen, the metal forms an oxide. Oxide is a compound of metal and oxygen. Here lithium metal reacts with oxygen to form lithium oxide.
2Li(s) + O₂(g)-----> Li₂O(s)
d. A displacement reaction is one in which a more reactive element displaces a less reactive element from a compound. Here Zinc is more reactive than silver, so silver was displaced to form Zinc Nitrate.
Zn(s) + 2AgNO₃(aq) -----> 2Ag(s) + Zn(NO₃)₂(aq)
To know more about reactions, click below:
brainly.com/question/11231920
#SPJ1
Answer:
I just did it home slice the first one's Ag+ and Zn2+ and the second one is A
Explanation:
I just did the assignment
Answer:
any of the set of metallic elements occupying a central block (Groups IVB–VIII, IB, and IIB, or 4–12) in the periodic table, e.g., iron, manganese, chromium, and copper. Chemically they show variable valence and a strong tendency to form coordination compounds, and many of their compounds are colored.
Explanation: