1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vazorg [7]
3 years ago
5

HELP ASAP will give brainliest for answer

Mathematics
1 answer:
katrin2010 [14]3 years ago
6 0

Answer:

This is the answer

x=π/10

You might be interested in
Sarah pays $80 for 5<br> piano lessons. What is<br> the cost per lesson?
marin [14]
It’s 16


Per lessons .
6 0
3 years ago
Which of the next equations are linear:
insens350 [35]
The first and third ones are both linear. The second one is not because of the exponent. Instead it is a parabola. 
8 0
4 years ago
HELP will give Brainliest.
Natalija [7]

Answer:

\left(-4y\:-\:16\right)\:-\:8y\:+\:10\:+\:2y=-10y-16+10

Step-by-step explanation:

Given the expression

\left(-4y\:-\:16\right)\:-\:8y\:+\:10\:+\:2y

Remove the parentheses

=-4y-16-8y+10+2y

Group like terms

=-4y-8y+2y-16+10

simplifying

=-10y-16+10

Therefore, the equivalent expression with 3 terms for the expression is:

\left(-4y\:-\:16\right)\:-\:8y\:+\:10\:+\:2y=-10y-16+10

4 0
3 years ago
There is a line that includes the point ( 18,-19) and has a slope of 0 what is its equation in slope-intercept form
wolverine [178]
The equation is y = mx + b

(18, -19)

substitute these numbers in the equation

-19 = 0(18) + b

-19 is y because it is the y slot in the cordinate and I put 0 for m because m is the slope and x is  18

-19 = 0 + b

b= -19

the equation is 

y = 0(x) - 19

y = -19
4 0
3 years ago
The ages of students enrolled in two math classes at the local community college, Class A and Class B, are listed in order below
nlexa [21]

Answer:

The true statement about Class B is that Class B has a smaller median and the same inter quartile range.

Step-by-step explanation:

We are given the ages of students enrolled in two math classes at the local community college, Class A and Class B, below;

Class A: 20, 20, 20, 21, 22, 23, 23, 25, 27, 29, 30, 31, 34, 35, 36, 39, 40

Class B: 16, 17, 18, 18, 20, 22, 22, 24, 26, 26, 28, 29, 30, 34, 37, 40, 42

1) <u>Firstly, we will calculate Median for Class A;</u>

For calculating median, first we have to observe that number of observations (n) in our data is even or odd, that is;

  • If n is odd, then the formula for calculating median is given by;

                     Median  =  (\frac{n+1}{2})^{th} \text{ obs.}

  • If n is even, then the formula for calculating median is given by;

                     Median  =  \frac{(\frac{n}{2})^{th} \text{ obs.}+(\frac{n}{2}+1)^{th} \text{ obs.}}{2}

Here, number of observation is odd, i.e. n = 17.

So,  Median  =  (\frac{n+1}{2})^{th} \text{ obs.}

                     =  (\frac{17+1}{2})^{th} \text{ obs.}

                     =  (\frac{18}{2})^{th} \text{ obs.}

                     =  9^{th} \text { obs.} = 27

Hence, the median of class A is 27.

2) <u>Now, we will calculate Median for Class B;</u>

For calculating median, first we have to observe that number of observations (n) in our data is even or odd, that is;

  • If n is odd, then the formula for calculating median is given by;

                     Median  =  (\frac{n+1}{2})^{th} \text{ obs.}

  • If n is even, then the formula for calculating median is given by;

                     Median  =  \frac{(\frac{n}{2})^{th} \text{ obs.}+(\frac{n}{2}+1)^{th} \text{ obs.}}{2}

Here, number of observation is odd, i.e. n = 17.

So,  Median  =  (\frac{n+1}{2})^{th} \text{ obs.}

                     =  (\frac{17+1}{2})^{th} \text{ obs.}

                     =  (\frac{18}{2})^{th} \text{ obs.}

                     =  9^{th} \text { obs.} = 26

Hence, the median of class B is 26.

3) Now, we will calculate the Inter quartile range for Class A;

Inter quartile range = Upper quartile - Lower quartile

                                = Q_3-Q_1

SO,  Q_1 = (\frac{n+1}{4})^{th} \text{ obs.}

             =  (\frac{17+1}{4})^{th} \text{ obs.}

             =  (\frac{18}{4})^{th} \text{ obs.}

             =  4.5^{th} \text{ obs.}

             =  4^{th}  \text{ obs.} + 0.5[5^{th} \text{ obs.} -  4^{th} \text{ obs.}]

             =  21+ 0.5[22-  21]

             =  21.5

Similarly,  Q_3 = 3(\frac{n+1}{4})^{th} \text{ obs.}

             =  3(\frac{17+1}{4})^{th} \text{ obs.}

             =  (\frac{54}{4})^{th} \text{ obs.}

             =  13.5^{th} \text{ obs.}

             =  13^{th}  \text{ obs.} + 0.5[14^{th} \text{ obs.} -  13^{th} \text{ obs.}]

             =  34+ 0.5[35-  34]

             =  34.5

Therefore, Inter quartile range for Class A = 34.5 - 21.5 = 13.

4) Now, we will calculate the Inter quartile range for Class B;

Inter quartile range = Upper quartile - Lower quartile

                                = Q_3-Q_1

SO,  Q_1 = (\frac{n+1}{4})^{th} \text{ obs.}

             =  (\frac{17+1}{4})^{th} \text{ obs.}

             =  (\frac{18}{4})^{th} \text{ obs.}

             =  4.5^{th} \text{ obs.}

             =  4^{th}  \text{ obs.} + 0.5[5^{th} \text{ obs.} -  4^{th} \text{ obs.}]

             =  18+ 0.5[20-  18]

             =  19

Similarly,  Q_3 = 3(\frac{n+1}{4})^{th} \text{ obs.}

             =  3(\frac{17+1}{4})^{th} \text{ obs.}

             =  (\frac{54}{4})^{th} \text{ obs.}

             =  13.5^{th} \text{ obs.}

             =  13^{th}  \text{ obs.} + 0.5[14^{th} \text{ obs.} -  13^{th} \text{ obs.}]

             =  30+ 0.5[34-  30]

             =  32

Therefore, Inter quartile range for Class B = 32 - 19 = 13.

Hence, the true statement about Class B is that Class B has a smaller median and the same inter quartile range.

4 0
4 years ago
Other questions:
  • Solve the equation for the unknown quantity.<br> 6y + 7 = 5y - 7<br> y= (Simplify your answer.)
    8·1 answer
  • If 25 is 40% of a value, what is that value?
    13·1 answer
  • Find the measure of an interior angle of a regular polygon with 15 sides. Round to the nearest tenth if necessary.
    8·1 answer
  • Allison bought a 36 piece box of chocolates. 1/3 were creams 1/4 were nuts
    11·2 answers
  • Simplify the expression 3x(x – 12x) + 3x2 – 2(x – 2)2. Which statements are true about the process and simplified product?
    5·1 answer
  • Keta sold tickets for her school play at $6 for students, and $9 for adults. She sold 15 adult tickets and made a sales total of
    8·2 answers
  • PLEASE help, im trying to bring my grade up for this class.
    11·1 answer
  • How do you simplify 4√6 times 5√2
    14·1 answer
  • Write the quadratic equation in standard form.
    7·1 answer
  • the raw score on a certain standarized test is determined by subtracting1/4 of the number of incorrect answers
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!