Step-by-step explanation:
(3x+6x)+(9a-10a)
combine like terms
9x+-a
That's as far as it goes...
Sorry if it's wrong
Answer:
This is the rate at which the radius of the balloon is changing when the volume is 300

Step-by-step explanation:
Let
be the radius and
the volume.
We know that the gas is escaping from a spherical balloon at the rate of
because the volume is decreasing, and we want to find 
The two variables are related by the equation

taking the derivative of the equation, we get

With the help of the formula for the volume of a sphere and the information given, we find
![V=\frac{4}{3}\pi r^3\\\\300=\frac{4}{3}\pi r^3\\\\r^3=\frac{225}{\pi }\\\\r=\sqrt[3]{\frac{225}{\pi }}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B4%7D%7B3%7D%5Cpi%20r%5E3%5C%5C%5C%5C300%3D%5Cfrac%7B4%7D%7B3%7D%5Cpi%20r%5E3%5C%5C%5C%5Cr%5E3%3D%5Cfrac%7B225%7D%7B%5Cpi%20%7D%5C%5C%5C%5Cr%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B225%7D%7B%5Cpi%20%7D%7D)
Substitute the values we know and solve for 
![\frac{dV}{dt}=4\pi r^2 \frac{dr}{dt}\\\\\frac{dr}{dt}=\frac{\frac{dV}{dt}}{4\pi r^2} \\\\\frac{dr}{dt}=-\frac{12}{4\pi (\sqrt[3]{\frac{225}{\pi }})^2} \\\\\frac{dr}{dt}=-\frac{3}{\pi \left(\sqrt[3]{\frac{225}{\pi }}\right)^2}\\\\\frac{dr}{dt}=-\frac{3}{\pi \frac{225^{\frac{2}{3}}}{\pi ^{\frac{2}{3}}}}\\\\\frac{dr}{dt}=-\frac{3}{225^{\frac{2}{3}}\pi ^{\frac{1}{3}}} \approx -0.05537 \:\frac{ft}{h}](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdt%7D%3D4%5Cpi%20r%5E2%20%5Cfrac%7Bdr%7D%7Bdt%7D%5C%5C%5C%5C%5Cfrac%7Bdr%7D%7Bdt%7D%3D%5Cfrac%7B%5Cfrac%7BdV%7D%7Bdt%7D%7D%7B4%5Cpi%20r%5E2%7D%20%5C%5C%5C%5C%5Cfrac%7Bdr%7D%7Bdt%7D%3D-%5Cfrac%7B12%7D%7B4%5Cpi%20%28%5Csqrt%5B3%5D%7B%5Cfrac%7B225%7D%7B%5Cpi%20%7D%7D%29%5E2%7D%20%5C%5C%5C%5C%5Cfrac%7Bdr%7D%7Bdt%7D%3D-%5Cfrac%7B3%7D%7B%5Cpi%20%5Cleft%28%5Csqrt%5B3%5D%7B%5Cfrac%7B225%7D%7B%5Cpi%20%7D%7D%5Cright%29%5E2%7D%5C%5C%5C%5C%5Cfrac%7Bdr%7D%7Bdt%7D%3D-%5Cfrac%7B3%7D%7B%5Cpi%20%5Cfrac%7B225%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7B%5Cpi%20%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7D%5C%5C%5C%5C%5Cfrac%7Bdr%7D%7Bdt%7D%3D-%5Cfrac%7B3%7D%7B225%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%5Cpi%20%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%20%5Capprox%20-0.05537%20%5C%3A%5Cfrac%7Bft%7D%7Bh%7D)
Answer:
noooo u.u
Step-by-step explanation:
bro i literally had the same question about this
you in honors or something? sry i only got A
I might have B later on or something
Answer:
A.
41.125π ≈ 129
149.875π ≈ 471
Step-by-step explanation:
Surface area of smaller ganza:
3.5/2 = 1.75 x 1.75 = 3.0625 x 3.14 = 9.61625 x 2 = 19.2325
1.75 x 10 = 17.5 x 3.14 = 54.95 x 2 = 109.9 + 19.2 = 129 (Rounded)
Surface area of larger ganza:
5.5/2=2.75 x 2.75 = 7.5625 x 3.14 = 23.74625 x 2 = 47.4925
2.75 x 24.5 = 67.375 x 3.14 = 211.5575 x 2 = 423.115 + 47.4925 = 471 (Rounded)
π
129/3.14 = 41.125
471/3.14 = 149.875
Answer:
From the plot it is clear that assumption 1 and 2 are violated. That is, the assumption of equal variance ( homoscedasticity) and there aren't any outliers.
Step-by-step explanation:
Both variables are quantitative and The relationship is linear have not been violated.