The answer is D i think because the line has an asymptote of x = 2 and it is the only option with + 2 in the equation
        
             
        
        
        
2x + 22 = 4(x + 3)...distribute thru the parenthesis
2x + 22 = 4x + 12...subtract 2x from both sides, subtract 12 from both sides
22 - 12 = 4x - 2x...simplify
10 = 2x...divide both sides by 2
10/2 = x...reduce
5 = x <==
        
             
        
        
        
rationalizing the numerator, or namely, "getting rid of that pesky radical at the top".
we simply multiply top and bottom by a value that will take out the radicand in the numerator.
![\bf \cfrac{\sqrt[3]{144x}}{\sqrt[3]{y}}~~
\begin{cases}
144=2\cdot 2\cdot 2\cdot 2\cdot 3\cdot 3\\
\qquad 2^3\cdot 18
\end{cases}\implies \cfrac{\sqrt[3]{2^3\cdot  18x}}{\sqrt[3]{y}}\implies \cfrac{2\sqrt[3]{  18x}}{\sqrt[3]{y}}
\\\\\\
\cfrac{2\sqrt[3]{  18x}}{\sqrt[3]{y}}\cdot \cfrac{\sqrt[3]{(18x)^2}}{\sqrt[3]{(18x)^2}}\implies \cfrac{2\sqrt[3]{(18x)(18x)^2}}{\sqrt[3]{(y)(18x)^2}}\implies \cfrac{2\sqrt[3]{(18x)^3}}{\sqrt[3]{18^2x^2y}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B%5Csqrt%5B3%5D%7B144x%7D%7D%7B%5Csqrt%5B3%5D%7By%7D%7D~~%0A%5Cbegin%7Bcases%7D%0A144%3D2%5Ccdot%202%5Ccdot%202%5Ccdot%202%5Ccdot%203%5Ccdot%203%5C%5C%0A%5Cqquad%202%5E3%5Ccdot%2018%0A%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B3%5D%7B2%5E3%5Ccdot%20%2018x%7D%7D%7B%5Csqrt%5B3%5D%7By%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Csqrt%5B3%5D%7B%20%2018x%7D%7D%7B%5Csqrt%5B3%5D%7By%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B2%5Csqrt%5B3%5D%7B%20%2018x%7D%7D%7B%5Csqrt%5B3%5D%7By%7D%7D%5Ccdot%20%5Ccfrac%7B%5Csqrt%5B3%5D%7B%2818x%29%5E2%7D%7D%7B%5Csqrt%5B3%5D%7B%2818x%29%5E2%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Csqrt%5B3%5D%7B%2818x%29%2818x%29%5E2%7D%7D%7B%5Csqrt%5B3%5D%7B%28y%29%2818x%29%5E2%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Csqrt%5B3%5D%7B%2818x%29%5E3%7D%7D%7B%5Csqrt%5B3%5D%7B18%5E2x%5E2y%7D%7D)
![\bf \cfrac{2(18x)}{\sqrt[3]{324x^2y}}~~
\begin{cases}
324=2\cdot 2\cdot 3\cdot 3\cdot 3\cdot 3\\
\qquad 12\cdot 3^3
\end{cases}\implies \cfrac{36x}{\sqrt[3]{12\cdot 3^3x^2y}}
\\\\\\
\cfrac{36x}{3\sqrt[3]{12x^2y}}\implies \cfrac{12x}{\sqrt[3]{12x^2y}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B2%2818x%29%7D%7B%5Csqrt%5B3%5D%7B324x%5E2y%7D%7D~~%0A%5Cbegin%7Bcases%7D%0A324%3D2%5Ccdot%202%5Ccdot%203%5Ccdot%203%5Ccdot%203%5Ccdot%203%5C%5C%0A%5Cqquad%2012%5Ccdot%203%5E3%0A%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7B36x%7D%7B%5Csqrt%5B3%5D%7B12%5Ccdot%203%5E3x%5E2y%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B36x%7D%7B3%5Csqrt%5B3%5D%7B12x%5E2y%7D%7D%5Cimplies%20%5Ccfrac%7B12x%7D%7B%5Csqrt%5B3%5D%7B12x%5E2y%7D%7D)
 
        
                    
             
        
        
        
Answer:
c reflexive property
if you look at it it's reflecting
 
        
                    
             
        
        
        
Answer:
-9,-4
Step-by-step explanation: